Overview

- Particle nature and principles – current knowledge
 - Physical capture processes
 - Capturing devices
- What has changed now?
 - Aspect ratio
 - Fibre morphology (e.g. coil)
- CSIRO’s Carbon Nanotube Program
 - Carbon Nanotube (CNT) materials
 - Applications
 - OHS related activities
- Proposed Future Work
Particle Capture Processes

- **Interception**
 Particle contact while following streamline
- **Inertial Impaction**
 Particle leaves streamline
- **Diffusion**
 Brownian Motion
- **Electrostatic Deposition**
- **Gravitational Setting**

Particle Capture Principles

- **Filter Medium**
- **Impactor**
 - Nozzle
 - Impaction Plate

Baumgartner, H., Löffler, Umhauer. (1986)

Particle Sizing Devices

Cascade Impactor

Dynamic Mobility Analyser

Marple, V.A. Aerosol and Particle Measurement Short Course, 35th Offering, University of Minnesota, August 23-25 (2010)

CSIRO. Detection of Carbon Nanotubes - Nanotechnology Work Health and Safety Symposium, 9-10 September 2010

Particle Size Distributions

- Characteristics of one and the same particle size distribution:
 - Number count
 - Surface area
 - Mass

Distribution changes significantly by the way it is characterised!
What has changed now?

Dimensions of Carbon Nanotubes

12 nm → 0.6 m
Reach from Sea Level to Peak of Mount Everest

Aspect Ratio up to 40,000
What has changed now?
Carbon Nanotube Aerosols

- Filter efficiency for spherical particles or nano-particle agglomerates:
 - Plot:
 Minimum between 0.1 µm and 0.3 µm particle diameter
- “Fibrous Objects ?? (Carbon Nanotubes)
 - Large aspect ratio: L/D from 1,000 to 40,000
 - Mass and area scale differently
 - Variable morphologies: Coils, bundles, etc.

Baumgartner, Loeffler, Umhauer, 1986
IEEE Transactions on Electrical Insulation 21(3) : 477-486.

What has changed now?
Particles – Size, Material, Structure

Problem:
Some particles are more hazardous than others - even if they are of the same size!

CSIRO. Detection of Carbon Nanotubes - Nanotechnology Work Health and Safety Symposium, 9-10 September 2010
What has changed now?
Particles – Size, Material, Structure

Fibrous Particles Take On Different Shapes

CNT Coil

CNT Bundle

Aerosols sampled in workplaces (literature)

• Workplace Air Sampling:
 • Laboratory (General):
 • non-fibrous particles (cells, spores)
 • mineral fibres (insulation)
 • agglomerates (respirable dust particles)
 • Targeted CNT Sampling
 Images from Literature:
 • Top: coarse CNT fibres & agglomerates
 • Centre: fine CNT clumps from dispersions
 • Bottom: amorphous carbon agglomerates
 • CNT Yarn Spinning
 • Look for aerosol particles from single fine, spinnable CNT
 or small bundles of such CNT

CSIRO. Detection of Carbon Nanotubes - Nanotechnology Work Health and Safety Symposium, 9-10 September 2010
CSIRO's Carbon Nanotube Program

Structure of CSIRO Materials

• FINE Carbon Nanotubes (CNT)
 CVD - Catalyst Pre-Deposition
 • Spinnable CNT
 • Outer diameter: 8 - 11 nm
 • Typ. 100 – 600 µm long
 • 4-7 walls (TEM)
 • Short CNT
 • Outer diameter: ca. 10 nm
 • 2-3 µm long

• COARSE Carbon Nanotubes
 CVD - Catalyst Co-Injection
 • Long / Branched CNT
 • Outer diameter: 50-80nm
 • 2-3mm long
 • >60 walls

SEM by Chi Huynh and Stephen Hawkins, CSIRO
CSIRO’s Carbon Nanotube Program
Carbon Nanotube (CNT) Applications

• CNT Yarns
 • Diagnostics (filaments)
 • Medical (scaffolds)
• CNT Sheets
 • Conductive electrodes (displays, solar cell, electrochemistry)
 • Buckypaper membranes (membrane distillation)
• CNT as fluid pores
 • Isoporous CNT membranes, see image: (novel fluid transport phenomena)

SEM by K. Sears, CSIRO

CNT tips protruding from the surface Of an isoporous CNT membrane.

Carbon Nanotube OHS
Main Project Activities

Workplace Assessments & Policy Development

Equipment Evaluation & Research into CNT Aerosols
Carbon Nanotube OHS Workplace Assessments & Policy Development

- **Safe Work Australia**
 Contract on assessing workplace in CSIRO (Belmont) to CNT aerosols – published on SWA website:

- **Nanotechnology OHS Measurement Reference Group**
 - Members:
 Government (Fed/State), Australian Institute of Hygienists (AIIOH), several Universities and CSIRO
 - Input in policy development and standardisation

Carbon Nanotube OHS Equipment Evaluation & Research

Filter Testing

Hazardous Aerosol Evaluation

Nano-Aerosol Detection
Synthetic CNT Aerosols
Fine / Coarse Structure Differences (ELPI)

Plate 1
(44nm)

Plate 6
(516nm)

Proposed Future Work
Research Directions

General equipment evaluation
- Finish commissioning Hazardous Aerosol Test Duct
- Instrument set up and verification (Nano-ID)

Membrane sampling
SEM: no particles (?) – step-by-step verification

Aims

Assess equipment response to target particles background-free (using Test Duct)
Set up equipment for sampling tasks (Nano-ID, CPC)
Transfer knowledge to occupational hygienists for conducting workplace assessments

Nano-ID

- Designed to sample particle size over 4 (!) decades from 2nm to 30,000nm.
- Uses two principles in sequence:
 - Range 250nm – 30,000nm: Impactor
 - Range 2nm – 250nm: Diffusion battery (filter)

- Issues:
 - Greasing/not greasing of impactor plates:
 Suppression of particle bounce <-> SEM imaging of nanoparticles
 - Diffusion battery:
 Meshes (2nm end) <-> Nanofilament filter (250nm end)
 Reach sufficiently high particle concentration for SEM analysis

- Rule of thumb:
 - One instrument per particle size decade is required