Storage and Handling of Workplace Dangerous Goods

NATIONAL CODE OF PRACTICE [NOHSC:2017(2001)]
FOREWORD

In seeking to achieve Australian workplaces free from injury and disease, NOHSC works to lead and coordinate national efforts to prevent workplace death, injury and disease. We seek to achieve our mission through the quality and relevance of information we provide and to influence the activities of all parties with roles in improving Australia’s OHS performance.

NOHSC has five strategic objectives:

- Improving national data systems and analysis,
- Improving national access to OHS information,
- Improving national components of the OHS and related regulatory framework,
- Facilitating and coordinating national OHS research efforts, and
- Monitoring progress against the National OHS Improvement framework.

This publication is a contribution to achieving those objectives.
CONTENTS

FOREWORD... iii

PART A — PRELIMINARY .. 1

1. **TITLE** .. 1
2. **DECLARATION** .. 1
3. **PURPOSE** .. 1
4. **SCOPE AND APPLICATION** .. 1
5. **INTERPRETATION** ... 4
6. **INCORPORATION OF REFERENCES** ... 4
7. **OBLIGATIONS ON MORE THAN ONE PERSON** .. 5

PART B — DUTIES .. 6

8. **GENERAL DUTY OF CARE** .. 6
9. **DANGEROUS GOODS** ... 6
10. **PROVISION OF MATERIAL SAFETY DATA SHEETS** ... 9
11. **PROVISION OF OTHER INFORMATION** .. 10
12. **PLANT AND STRUCTURES USED FOR STORAGE AND HANDLING** 10
13. **HAZARD IDENTIFICATION** .. 13
14. **RISK ASSESSMENT** .. 16
15. **CONTROL OF RISK** .. 18
16. **SEPARATION BY PHYSICAL MEANS** ... 27
17. **SEGREGATION OF DANGEROUS GOODS** ... 28
18. **STABILITY OF DANGEROUS GOODS** .. 29
19. **CONTAINERS FOR BULK DANGEROUS GOODS** ... 29
20. **SPILLS AND CONTAINMENT** ... 31
21. **IMPACT PROTECTION** .. 32
22. **TRANSFER OF DANGEROUS GOODS** .. 33
23. **FIRE PROTECTION** .. 34
24. **EMERGENCY PREPAREDNESS** ... 39
25. **IGNITION SOURCES IN HAZARDOUS AREAS** ... 43
26. **SAFETY EQUIPMENT** .. 45
27. **CONTROL OF HAZARDOUS ATMOSPHERE** ... 45
28. **LIGHTING** ... 46
29. **ACCESS** .. 47
30. **SECURITY** ... 47
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.</td>
<td>DECOMMISSIONING/ABANDONING/DISPOSAL</td>
<td>48</td>
</tr>
<tr>
<td>32.</td>
<td>DANGEROUS GOODS INFORMATION</td>
<td>48</td>
</tr>
<tr>
<td>33.</td>
<td>PLANT AND STRUCTURES USED FOR STORAGE AND HANDLING</td>
<td>49</td>
</tr>
<tr>
<td>34.</td>
<td>IDENTIFICATION</td>
<td>52</td>
</tr>
<tr>
<td>35.</td>
<td>IMMEDIATE USE CONTAINERS</td>
<td>53</td>
</tr>
<tr>
<td>36.</td>
<td>PLACARDS</td>
<td>53</td>
</tr>
<tr>
<td>37.</td>
<td>OUTER WARNING PLACARDS</td>
<td>54</td>
</tr>
<tr>
<td>38.</td>
<td>PLACARDS FOR BULK</td>
<td>54</td>
</tr>
<tr>
<td>39.</td>
<td>PLACARDS FOR PACKAGED DANGEROUS GOODS</td>
<td>55</td>
</tr>
<tr>
<td>40.</td>
<td>MANIFEST AND SITE PLAN OF THE PREMISES</td>
<td>55</td>
</tr>
<tr>
<td>41.</td>
<td>DANGEROUS OCCURRENCES</td>
<td>57</td>
</tr>
<tr>
<td>42.</td>
<td>REPORTING DANGEROUS OCCURRENCE OR NEAR MISSES 42 – 44.</td>
<td>58</td>
</tr>
<tr>
<td>43.</td>
<td>NOTIFICATION CLAUSE</td>
<td>58</td>
</tr>
<tr>
<td>44.</td>
<td>CONSULTATION</td>
<td>59</td>
</tr>
<tr>
<td>45.</td>
<td>INDUCTION, INFORMATION, TRAINING AND SUPERVISION</td>
<td>60</td>
</tr>
<tr>
<td>46.</td>
<td>AVAILABILITY OF RISK ASSESSMENT RECORD</td>
<td>62</td>
</tr>
<tr>
<td>47.</td>
<td>VISITORS</td>
<td>63</td>
</tr>
<tr>
<td>48.</td>
<td>MATERIAL SAFETY DATA SHEETS</td>
<td>63</td>
</tr>
<tr>
<td>49.</td>
<td>REGISTER FOR DANGEROUS GOODS</td>
<td>65</td>
</tr>
<tr>
<td>50.</td>
<td>DUTIES OF EMPLOYEES.</td>
<td>65</td>
</tr>
<tr>
<td>51.</td>
<td>DUTIES OF ALL PERSONS</td>
<td>65</td>
</tr>
<tr>
<td>52.</td>
<td>PIPELINES - GENERAL</td>
<td>66</td>
</tr>
<tr>
<td>53.</td>
<td>NOTIFICATION REQUIREMENTS FOR THE OWNER OF A PIPELINE.</td>
<td>66</td>
</tr>
<tr>
<td>54.</td>
<td>ACKNOWLEDGEMENT OF NOTIFICATION BY THE AUTHORITY</td>
<td>66</td>
</tr>
<tr>
<td>55.</td>
<td>APPENDIX 1 - MINOR QUANTITIES</td>
<td>67</td>
</tr>
<tr>
<td>56.</td>
<td>APPENDIX 2 - RETAIL PREMISES</td>
<td>73</td>
</tr>
<tr>
<td>57.</td>
<td>APPENDIX 3 - PUBLICATIONS INCORPORATED IN THIS CODE</td>
<td>78</td>
</tr>
<tr>
<td>58.</td>
<td>APPENDIX 4 - A SYSTEM FOR RANKING RISKS</td>
<td>82</td>
</tr>
<tr>
<td>59.</td>
<td>APPENDIX 5 - CHECKLIST FOR IDENTIFYING HAZARDS LIQUIDS.</td>
<td>85</td>
</tr>
<tr>
<td>60.</td>
<td>APPENDIX 6 – GUIDELINES FOR IDENTIFYING HAZARDS ASSOCIATED WITH PLANT AND EQUIPMENT USED IN THE STORAGE AND HANDLING OF DANGEROUS GOODS</td>
<td>90</td>
</tr>
<tr>
<td>61.</td>
<td>APPENDIX 7 - CONTROL OF PARTICULAR RISKS</td>
<td>93</td>
</tr>
<tr>
<td>62.</td>
<td>APPENDIX 8 – ENGINEERING CONTROLS WORKSHEET FOR STORAGE AND HANDLING INSTALLATIONS</td>
<td>96</td>
</tr>
</tbody>
</table>
APPENDIX 9 – GUIDANCE FOR INDUSTRIAL TRUCKS USED IN HAZARDOUS AREAS .. 105

APPENDIX 10 - EXEMPTION QUANTITIES FOR PACKAGE LABELLING .. 107

APPENDIX 11 - FLOW DIAGRAMS FOR PLACARDING PREMISES AND WORK AREAS .. 108

APPENDIX 12 - SAMPLE MANIFEST FORM .. 110

APPENDIX 13 - SAMPLE PLAN OF PREMISES ... 112

APPENDIX 14 - SAMPLE EMERGENCY PROCEDURES POCKET CARD .. 113

APPENDIX 15 - DANGEROUS GOODS COMPATIBILITY CHART – Under construction 115
INTRODUCTION

The National Code of Practice for the Storage and Handling of Workplace Dangerous Goods provides guidance on how to comply with the requirements set out in the National Standard for the Storage and Handling of Workplace Dangerous Goods (referred to in this document as the national standard). This national code of practice should therefore be read in conjunction with the national standard.

Dangerous goods are widely used throughout the community under a variety of conditions, by industry, commerce and institutions, and in domestic residential situations. The methods for complying with the national standard may vary widely, depending on the nature and scope of the operations, the extent of involvement with dangerous goods, and whether or not there is contact with the general public.

In line with recent developments in occupational health and safety legislation, the national standard establishes performance objectives and allows industry the maximum practicable flexibility in achieving those objectives. Consistent with that approach, this national code of practice wherever possible allows for alternative approaches to achieving compliance with the national standard depending on the needs of the facility.

Where more detail is required than is provided in this code of practice, users are guided in the direction of documents, including Australian Standards, that identify particular technical specifications for the safe storage and handling of certain types of dangerous goods under specific conditions. Australian Standards, industry and other codes of practice may assist in many situations, but detailed compliance with these is not mandatory, provided it can be demonstrated that the requirements of the national standard can be met.

To this end a more extensive list of related standards and codes of practice is provided at Appendix 3. These standards and codes are incorporated in this national code and where appropriate may be relevant to complying with the national standard.

Other references that may also be useful, include overseas standards and industry codes of practice. For instance, the Australian Gas Association industry codes of practice which provide detailed requirements applicable to some circumstances where Class 2.1 dangerous goods are stored and handled.

A number of aids, such as checklists, flowcharts and sample forms have been included to assist industry to comply.

The national code provides information and guidance for the storage and handling of dangerous goods in minor quantities and in consumer packages supplied by retailers.

- However the occupier, of premises where minor quantities of dangerous goods are stored and handled, can elect to control those goods using Appendix 1 or apply the risk management provisions of the national standard in conjunction with the requirements of the relevant Australian Standard for the dangerous goods on the premises.

- Provisions for the control of dangerous goods stored and handled on a retailer’s premises is included in Appendix 2 – Retail Premises.
In the decimal numbering system used in this national code of practice, paragraph numbers commence with the number of the corresponding clause in the national standard to which they refer. Where a specific clause in the national standard is referenced in this code of practice, the letters "NS" followed by the clause number, are used to identify the clause.

 e.g. **NS 10(2)(b)** is a reference to clause 10(2)(b) of the national standard.

Similarly the letters “CoP” are used to identify paragraph numbers in this code of practice.

 e.g. **CoP5.2.1** is a reference to paragraph 5.2.1 in this code of practice.

Where applicable, and as far as *practicable*, the number immediately following the first decimal point corresponds with the sub-clause number in the national standard to which the paragraph refers.

Where there are paragraphs for example paragraph 5.2, with no corresponding clause in the national standard, the equivalence resumes in subsequent paragraphs.

 e.g. Paragraph 15.1 in this national code of practice (**CoP 15.1**) refers to the subject matter of **NS 15(1)** and **CoP 15.2** to that of **NS 15(2)**.

Sometimes a particular clause in the national standard requires no further or explanatory material in this national code of practice. In such cases, a brief note outlining the requirements for that Clause in the national standard will be provided for that paragraph number in this national code of practice (For example see Clauses 6.2 – 6.4).
PART A — PRELIMINARY

1. TITLE

This document may be cited as the National Code of Practice for the Storage and Handling of Workplace Dangerous Goods [NOHSC:2017(2001)] and is referred to as “the national code of practice” or simply “this code” throughout this document.

2. DECLARATION

This national code of practice was declared by the National Commission on 7 MARCH 2001.

3. PURPOSE

The purpose of this national code of practice is to provide practical guidance and advice on how to comply with the National Standard for the Storage and Handling of Workplace Dangerous Goods, hereafter referred to as the national standard.

4. SCOPE AND APPLICATION

This national code of practice is identical in scope and application to the national standard.

- Wherever possible it endeavours to suggest various courses of action that will lead to achievement of the health and safety standards set by the national standard.
- Compliance with this code is not mandatory. Persons with obligations under the national standard may choose to meet those obligations by following the recommendations in this code. A person may choose to comply with a provision of the national standard in some other way, provided that the method used ensures that compliance.
- In some circumstances, the risk assessment process of NS 13–15 may identify that following the specific recommendations of this code and referenced documents may not guarantee achievement of all the health and safety objectives of the national standard. Under those circumstances other or additional risk control methods will need to be identified and implemented.

- The national standard applies only to workplaces. Where dangerous goods are stored or handled in private residences or other premises which are not workplaces, the national standard and this code may provide useful guidelines for ensuring health and safety. Particular attention is drawn to the minor quantities provisions in Appendix 1.
- A summary of goods covered by the national standard and this national code of practice is provided in Table 1.
- Dangerous goods and goods too dangerous to be transported are identified in the ADG Code.
- Much of the terminology used to describe dangerous goods is defined in the ADG Code.
- The storage and handling of dangerous goods of Classes 1, 6.2 and 7 is outside the scope of the national standard and this national code of practice. When storing or handling these classes, reference should be made to the relevant State or Territory legislation.
- The national standard and this code apply to hazardous substances only when they also meet the classification requirements for dangerous goods. — See detailed discussion on hazardous substances on page 4.
TABLE 1.
Types of Goods Covered by the National Code of Practice

<table>
<thead>
<tr>
<th>Type of Goods</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGEROUS GOODS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 2</td>
<td>Gases</td>
<td>ADG Code</td>
</tr>
<tr>
<td>2.1</td>
<td>Flammable gas</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Non-flammable, non-toxic gas</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Toxic gas</td>
<td></td>
</tr>
<tr>
<td>Class 3</td>
<td>Flammable liquid</td>
<td></td>
</tr>
<tr>
<td>Class 4</td>
<td>Flammable solids etc.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Flammable solids; self-reactive and related substances; and desensitized explosives</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Substances liable to spontaneous combustion</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Substances that in contact with water emit flammable gases</td>
<td></td>
</tr>
<tr>
<td>Class 5</td>
<td>Oxidizing substances, organic peroxides</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Oxidizing substances</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Organic peroxides</td>
<td></td>
</tr>
<tr>
<td>Class 6.1</td>
<td>Toxic substances</td>
<td></td>
</tr>
<tr>
<td>Class 8</td>
<td>Corrosive substances</td>
<td></td>
</tr>
<tr>
<td>Class 9</td>
<td>Miscellaneous dangerous goods and articles</td>
<td></td>
</tr>
</tbody>
</table>

| **GOODS TOO DANGEROUS TO BE TRANSPORTED** | | |
| Goods listed in Appendix 5 of the ADG Code and goods determined to be so by an Authority | ADG Code |

COMBUSTIBLE LIQUID:		
“Any liquid other than a flammable liquid that has a flashpoint, and that has a fire point less than its boiling point”	AS 1940 – The storage and handling of flammable and combustible liquids	
C1	**Combustible liquid with flashpoint >60.5°C ≤150°C**	
C2	**Combustible liquid with flashpoint >150°C**	

Dangerous Goods and Hazardous substances

Occupiers are expected to know the difference between *dangerous goods* and hazardous substances, which are classified according to different criteria. *Dangerous goods* are classified on the basis of immediate physical or chemical hazards, such as fire, explosion, corrosion and toxicity, that may affect life, health, property or the environment. Hazardous substances are classified only on the basis of immediate or long term health effects.

Dangerous goods and hazardous substances are covered by separate regulations, standards and codes, each focusing on controlling the different *risks* described above. Since many hazardous substances are also classified as *dangerous goods*, both sets of requirements will apply in these cases.

The National Model Regulations for the Control of Workplace Hazardous Substances [NOHSC:1005(1994)] apply to the storage, handling and use of hazardous substances in the workplace. These Model Regulations have been implemented in all States and Territories.

The National Standard for the Storage and Handling of Workplace Dangerous Goods and this code have been drafted to complement the *National Model Regulations for the Control of Workplace Hazardous Substances* as far as possible.

In some cases work carried out to ensure compliance with the Hazardous Substances Regulations will contribute significantly to complying with the national standard. Persons with duties under the Hazardous Substances Regulations *should* be able to adapt processes established for those regulations to achieve compliance with many of the requirements of the national standard.
4.1 Combustible Liquids

4.1.1 NS 4(2)(a) applies all the requirements of the national standard to C1 combustible liquids as though they were dangerous goods, excepting the provision and keeping of material safety data sheets.

4.1.2 C1 and C2 combustible liquids are included as fire risk dangerous goods as, when involved in a fire, they contribute to the fire load as though a flammable liquid. Many are also highly reactive with Class 5 dangerous goods, leading to ignition and an intense fire.

4.1.3 The separation distances and construction requirements for barriers to achieve isolation under NS 4(2)(c) must be such that a reasonably foreseeable incident involving the C1 liquids will not spread to the dangerous goods, and vice versa.

4.2 Dangerous Goods in Fuel Systems or Equipment or Otherwise Essential to Operation of Equipment

4.2.1 The general duty of care imposed by NS 8 is the only condition placed on dangerous goods in fuel systems or otherwise essential to the operation of equipment.

Examples of storage and handling systems to which only NS 8 applies under NS 4(3) include:

- batteries connected to and essential for the operation of plant, equipment, vehicles, boats and appliances;
- fuel in fuel tanks and systems connected to and essential for the operation of plant, equipment, vehicles, boats and appliances;
- dangerous goods contained in portable firefighting or medical equipment deployed for use at the premises

4.2.2 Under Regulation 1.18 of the Road Transport Reform (Dangerous goods) Regulations, the Competent Authority may determine that particular substances or articles are or are not dangerous goods, notwithstanding whether or not they would otherwise be dangerous goods under the ADG Code. Applying NS 4(3)(a), a determination that goods are not dangerous goods would exempt those goods from the application of the national standard.

- The Road Transport Reform (Dangerous Goods) Regulations also include a mechanism, through the 'Competent Authorities Panel' for mutual recognition of determinations by all jurisdictions.
- An example of where there may be an inconsistency between the national standard and other legislated requirements may be the placarding requirements for a freight container that is being loaded with dangerous goods for transport by sea under the IMDG Code.
5. INTERPRETATION

This national code of practice uses the definitions provided in the national standard. Where required, other terms are described in the text or in footnotes.

Practicability Criteria

Practicability is a concept used throughout the national standard, but most frequently in regard to occupiers duties.

Practicable does not just mean the cost in dollar terms.

To determine what is practicable, a duty holder, must take into account:

(a) **the severity of the hazard or risk in question**

 i.e. How likely is it that the storage and handling of the *dangerous goods* will result in injury to people or the likelihood of damage occurring to property?

 How serious is the injury and property damage likely to be and how many people could be affected?

(b) **the state of knowledge about the hazard or risk and ways it may be removed or mitigated**

 i.e. What is known about the *hazards or risks* associated with the storage and handling and the ways to control the risk?

 What do manufacturers and suppliers of *dangerous goods* know about the hazards and risks?

 What do workplaces dealing with similar *dangerous goods* do to control the risk?

 What information can industry professionals and organisation, unions and government agencies provide?

(c) **the availability and suitability of ways to remove or mitigate the hazard or risk**

 i.e. Are the *risk* controls that have been identified readily available?

 Are they suitable for the *premises* and the *employees* involved?

(d) **the cost of removing or mitigating the hazard or risk**

 i.e. Are the costs of implementing the *risk* control commensurate with the benefits gained?

 Unless time and money invested in selecting and implementing *risk* controls results in the elimination or significant reduction in *risks*, more cost effective *risk* controls *should* be identified.

6. INCORPORATION OF REFERENCES

6.1 When applying the provisions and specifications from a referenced document, such as an Australian Standard or industry code of practice, the latest edition *should* always be followed to ensure that the latest safety developments are incorporated.

When a later edition is subsequently published with updated provisions, the implications for existing installations will need to be assessed. In such circumstances a *risk* assessment *should* be carried out (see NS 15(3)) to determine whether upgrading is required.

- Documents such as Australian Standards are periodically updated to incorporate the latest state of safety knowledge and experience.
- An installation that complied with an earlier edition may no longer comply.
- Upgrading of the facility to meet the new provisions may not be necessary if a risk assessment indicates that the current control measures are still satisfactory.
6.2 – 6.4 Clause 6.2 – 6.4 of the national standard address the issues of referenced documents and approvals given by the Authority and the Competent Authorities Panel.

7. Clause 7 of the national standard addresses the duty of each person to comply with the provisions of the national standard regardless of whether another person with that duty or other duty has complied with the requirements of the national standard.
PART B — DUTIES

GENERAL DUTY OF CARE

8. Clause 8 of the national standard states the general duty of care for the purposes of this national standard.

Under **NS 8** anyone with the means and responsibility to take preventative action (implement risk control) is in breach of duty of care when any injury to persons, or damage to property or the environment occurs and all practicable steps had not been taken to prevent that outcome. It should be noted that this is subject to the test of practicability. —see **CoP 5.1**

DUTIES OF MANUFACTURERS, SUPPLIERS, IMPORTERS, DESIGNERS AND INSTALLERS

This section of the national standard (**NS 9–11**) imposes a range of duties on specified people with respect to:

- classification, packaging and labelling of dangerous goods;
- ensuring that goods are in a safe condition for storage and handling;
- providing safety information including MSDS; and
- the supply and installation of any plant and structures used for the storage and handling of dangerous goods.

9. DANGEROUS GOODS

9.1 — 9.3 Clauses **NS 9.1 - 9.3** of the national standard are the requirements for a manufacture or importer to classify dangerous goods.

Classification

- Under **NS 9(1, 2 & 3)** the importer or manufacturer of any goods has the responsibility to determine if they are dangerous goods and, if so to classify them in accordance with the ADG Code
- In Australia, the ADG Code is the principal source of information for dangerous goods classification.
- The ADG Code is itself based on the United Nations Recommendations on the Transport of Dangerous goods which is revised every two years.
- International Codes such as the IMDG Code, ICAO Rules and IATA Regulations also use the UN classification system, as do the European agreements for road and rail transport (ADR and RID)

Labelling

- The ADG Code contains detailed instructions on labelling. The requirements found in the 6th Edition of the ADG Code are summarised in **CoP 9.4**.
The supplier of dangerous goods should ensure that:

(a) the goods supplied are packed in accordance with the ADG Code, with particular importance given to the need for the packagings to be in sound condition and compatible with the goods; and

(b) the goods supplied are in all respects in accordance with any specific storage and handling requirements specified by the manufacturer.

(c) where dangerous goods are supplied in packages above the minimum size specified in the ADG Code they are labelled in accordance with the ADG Code. Depending on the Class and Packing Group of the dangerous goods, those minimum sizes range from 20 mL or 20 g to 2 L or 2 kg. The minimum sizes are determined from a series of flow charts in the ADG Code which have been summarised as Appendix 10.

(d) where packages are prepared for transport that require marking, they are marked with an Australian contact name and address, plus, for each type of dangerous goods in the package:

(i) the Proper shipping name;

(ii) the UN Number;

(iii) the Class label; and

(iv) all applicable Subsidiary Risk labels (except where these would duplicate Class labels).

in the ADG Code flow charts, this is referred to as “standard marking for a package”.

(e) where inner packagings are marked, they are marked with the:

(i) Proper shipping name or technical name for the dangerous goods;

(ii) Class label; and

(iii) applicable Subsidiary Risk labels.

in the ADG Code flow charts, this is referred to as “inner package marking”.

(f) where dangerous goods are used in that workplace they are labelled in accordance with the National Code of Practice for the Labelling of Workplace Substances [NOHSC:2012(1994)], in order to protect the health and safety of people using those dangerous goods.
Clause 9.5 of the national standard restricts the supplier from supplying dangerous goods where they would reasonably be expected to know that the goods are not contained, labelled or packaged in accordance with the ADG Code.

9.6 A Person Who Retails Dangerous Goods

When determining under NS 9(6)(a) whether a container provided by the purchaser is suitable for dangerous goods, the retailer should be reasonably satisfied that the container:

(a) is of a type usually associated with the particular dangerous goods. If not, does it appear sufficiently robust and constructed of a material that is unlikely to be affected by the dangerous goods?

(b) has a closure that is tight fitting that could be expected to prevent the spillage of dangerous goods from the container under normal conditions of handling; and

(c) is free from any substance that could present a risk with the dangerous goods.

Where a retailer has concerns regarding a container provided by the customer to be filled with dangerous goods, the retailer should advise the customer that the container should not be filled, if it is not:

- In good condition
- Correctly labelled
- Capable of being properly secured; and
- Being refilled with the same product.

For purchaser supplied containers to be filled with fuel:

- containers which comply with Australian Standard AS 2906 Fuel Containers - Portable - Plastics and Metal are preferred;
- other metal containers may be filled with fuel provided that they are substantial and have a secure and leakproof closure; and
- plastics containers should only be used if they comply with AS 2906 Fuel containers – portable – Plastics and metal.

A fuel tank of an engine or vehicle may also be used as a fuel container.

9.7 Filling of Cylinders and Disposable Containers for Class 2 Dangerous Goods

9.7.1 Gas cylinders manufactured in Australia are marked in accordance with the provisions of Australian Standard AS 2030.1 Cylinders for compressed gases to indicate that they have been physically tested to demonstrate their ability to withstand their design pressures. The specified period of test validity (commonly 10 years) is indicated.

9.7.2 An imported gas cylinder should only be filled if it has similar marking and test date indicating an equivalent performance to that required by AS 2030.1.

9.7.3 A cylinder outside its current test date should not be filled. If it is intended for reuse, it should be retested in accordance with AS 2030 and marked with new test dates prior to filling.

9.7.4 Prior to filling, a cylinder should be inspected for excessive corrosion, physical damage; and serviceability of valves, fittings and any protective devices like neck rings and shrouds. A cylinder that shows evidence of excessive damage should not be filled.
9.7.5 A cylinder *should* only be filled with a gas for which it is suitable.

- Most cylinders are designed to be used for a specific gas or group of gases, and have fittings that are only suitable for those gases.
- Some cylinders are distinctively painted or marked to readily identify their intended contents. These are safety factors which discourage contamination and incorrect usage.

For example: oxygen cylinders are painted a different colour to acetylene cylinders and their valve assemblies are not interchangeable, preventing inadvertent mistaken identity.

9.7.6 A cylinder *should* only be filled using equipment specifically designed for the purpose. The use of adaptors is discouraged unless the use of those adaptors has been authorised by the original supplier of the gas or the manufacturer of the cylinder.

10. **PROVISION OF MATERIAL SAFETY DATA SHEETS**

10.1 A *MSDS* which conforms with the provisions of the *National Code of Practice for the Preparation of Material Safety Data Sheets* [NOHSC:2011(1994)] would generally meet the *MSDS* requirements of this national standard.

- It is expected that the *National Code of Practice for the Preparation of Material Safety Data Sheets* [NOHSC:2011(1994)] will be revised and retitled to incorporate *dangerous goods*.
- Other acceptable *MSDS* formats include those of the European Union and the International Labour Office, as described in the *MSDS* national code of practice. Any overseas *MSDS* provided in Australia *should* include the relevant Australian information, for example, supplier contact details and any relevant exposure standard.

10.2 For *dangerous goods* that may be unstable except under controlled conditions, it is essential that the *MSDS* provide full details of those conditions and specify the recommended proportion and safe limits for every ingredient that stabilises the *dangerous goods*. These *should* include all phlegmatizers, diluents, solvents, wetting agents, stabilizers, inhibitors, and/or adulterants that are necessary to maintain safety.

Examples of such controls include:
- ethylene oxide gas which depends on the addition of an inhibitor to ensure it remains chemically stable and does not start to polymerise;
- acetylene gas which is normally absorbed onto an acetone saturated substrate in a cylinder to ensure stability; and
- most organic peroxides which must be stored below a *control temperature* to prevent self-accelerating decomposition that may result in explosion.

10.2.1 Reviewing and Revising *MSDS*

10.2.1.1 Manufacturers and *importers* of *dangerous goods* are required to review *MSDS* as often as necessary to ensure the information remains accurate and current. Review *should* take place:

(a) whenever there is a change in the formulation of a product;

(b) whenever new information on the *hazardous* properties or the health effects of the product or one of its *ingredients* becomes available;
(c) whenever, through review or other means, it becomes apparent that the information provided may not be completely accurate, current or comprehensive.

10.2.1.2 In any event, manufacturers and importers must ensure the MSDS is reviewed no later than five years after the last date of review.

10.2.1.3 After any review or revision, the MSDS should be reissued with the review date.

10.3 Providing a Current MSDS

10.3.1 Under NS 10(2)(b), suppliers of dangerous goods are obligated to provide a copy of the current MSDS on or before the first occasion that dangerous goods are supplied to a workplace and on the first supply of those goods following revision of the MSDS.

10.3.2 The concession provided by NS 10(3) means that a retailer does not have to supply MSDS for products and transactions of the types indicated.

11. PROVISION OF OTHER INFORMATION

11.1 Situations where other information might be requested under NS 11 may include where dangerous goods are encountered in a use not covered by the MSDS, or where the MSDS does not provide sufficient information for a particular use.

11.2 Where the requested information is not immediately available to the supplier, the supplier may be able to obtain it from the manufacturer.

12. PLANT AND STRUCTURES USED FOR STORAGE AND HANDLING

12.1 NS 12 applies to all structures and plant associated with the storage and handling of dangerous goods, including:

(a) buildings
(b) all building fittings
(c) shelves and racking
(d) tanks, other bulk storage facilities
(e) pipework
(f) pumps
(g) process and reaction vessels

Two examples of other safety information are:

- summary reports produced under the Industrial Chemicals (Notification and Assessment) Act 1989 (Cwlth); and
- where it is available, specific information relating to the conditions for safe use, compatibility and chemical stability under particular circumstances.

This is an indicative list of examples only.

- Plant will normally be required to comply with the National Standard for Plant [NOHSC:1010(1994)].
- Structures will normally be required to comply with the Building Code of Australia.
(h) mixing vessels
(i) mills
(j) dispersers
(k) driers
(l) filters.

12.1.1 Ideally, all structures and plant will be designed and built for use with the specific dangerous goods. This enables all the aspects of the design, commissioning, operation, testing, maintenance, repair and decommissioning to be anticipated and planned for at the design stage. It also permits control mechanisms, for the risks arising from the hazards of the dangerous goods, to be incorporated in the initial design.

12.1.2 Where structures and plant that were not designed and built for use with the particular dangerous goods are subsequently to be introduced to that use, additional care is required to ensure suitability and that risks are controlled.

An example of plant that is commonly used to store bulk liquid dangerous goods at atmospheric pressure or just above atmospheric pressure, is a storage tank constructed to AS 1692 - Tanks for Flammable and Combustible liquids. A tank built to that specification may be able to be used to store other classes of liquid dangerous goods such as corrosive or toxic liquids, subject to a number of factors, including:

- materials of construction; and
- specific gravity.

A tank that has originally been designed and constructed for the storage of a Class 3 flammable liquid like petrol may be structurally able to contain diesel (C1 combustible liquid) or hydrochloric acid (Class 8 dangerous goods).

The decision on the suitability of the tank is subject to more than just structural considerations and must take into account the chemical and physical characteristics of diesel and hydrochloric acid. Unless the material of construction of the tank is suitable for use with the hydrochloric acid then the tank should not be used. Even if it were suitable, the maintenance practices and the frequency of carrying out any maintenance are only partly determined by the tank and more likely to be determined by the type of dangerous goods the tank contains.

Other features of the tank may also need to be modified to make it suitable for use.

- The operating procedures that were in place when the tank was storing petrol may no longer be suitable.
- The operating procedures and the types of PPE would also need to be reviewed with the change in the product.
A systematic approach to managing risk is a core requirement of the national standard. The approach of the national standard to risk management is basically a three step process, plus recording and review, as indicated below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Key Elements</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Identify the Hazards</td>
<td>♦ Identify all of the dangerous goods and their associated hazards ♦ Identify the hazards in or arising from the storage and handling processes ♦ Identify any neighbouring or external hazards</td>
<td>NS 13 CoP 13</td>
</tr>
<tr>
<td>Step 2 Assess the Risks</td>
<td>♦ Assess the potential severity of outcome of incidents arising from each hazard (S) ♦ Assess the likelihood of this incident taking place (L) ♦ Determine initial prioritisation of risk (L x S) ♦ Record results of assessment</td>
<td>NS 14 CoP 14</td>
</tr>
<tr>
<td>Step 3 Control the Risks</td>
<td>♦ Apply Practicability Test (based on feasibility and cost of mitigating risk) ♦ Determine final risk ranking ♦ Eliminate hazards leading to risk where practicable ♦ Determine risk control measure/s to reduce risk as far as practicable ♦ Implement risk control measures</td>
<td>CoP 5.1 NS 15 CoP 15</td>
</tr>
<tr>
<td>Review</td>
<td>♦ Repeat Steps 1 and 2 to ensure risks mitigated ♦ Record results of second assessment ♦ Implement additional risk control measure/s</td>
<td>NS 13-15 CoP 13-15</td>
</tr>
</tbody>
</table>
13. HAZARD IDENTIFICATION

13.1 General

13.1.1 Under NS 13(1), the occupier is expected to identify every hazard associated with the storage and handling of dangerous goods and/or combustible liquids, of which knowledge is reasonably available. Sources of hazard knowledge are discussed in CoP13.2—13.7.

13.1.2 When identifying hazards, the occupier should consider, but not be limited to undertaking the following activities:

(a) consulting with employees;

(b) consulting with the suppliers of the dangerous goods, structures, equipment and supplies, or other persons with specific expertise;

(c) walking through and inspecting the premises and the methods of storage and handling;

(d) thoroughly examining plans of the premises, including all buildings and services, including water, gas, electricity, compressed air, steam, drains, fire services, chemical pipelines, roads and access ways and engineering drawings of relevant plant;

(e) discussing risks with occupiers of nearby premises and the emergency services authority; and

(f) consulting injury and illness records.

13.2 Dangerous Goods

13.2.1 The starting point for identifying the hazards associated with dangerous goods and combustible liquids will normally be the MSDS. Care needs to be taken to extract all relevant hazard information, however, as:

(a) all hazard information is not always grouped together;

(b) some of the properties which may constitute hazards when storing and handling dangerous goods may be listed as physical properties; and

(c) MSDS historically have tended to emphasise the toxicological hazards which are crucial for workplace hazardous substances, whereas the acute physico-chemical hazards are of primary importance with dangerous goods.

13.2.2 The nature of the hazards to be identified is not restricted to those inherent in the primary dangerous goods classification. Equally important are any secondary dangerous goods hazards as indicated by one or more Subsidiary Risks in addition to the primary Class.

13.2.3 The degree of danger posed by the classification hazard, as indicated by the Packing Group of certain dangerous goods, may also be a useful guide.
The physical properties of the *dangerous goods* may represent or contribute to *hazards* in the particular storage and *handling* situation. Relevant physical properties include:

(a) physical state solid/liquid/gas;
- if solid what potential for dust cloud explosion?
- f liquid mobile/viscous/volatile/miscible?
- if gas lighter/heavier than air?

(b) flashpoint, firepoint and explosive limits;

(c) viscosity;

(d) density;

(e) particle size;

(f) vapour pressure;

(g) solubility and pH;

(h) reactivity;

(i) boiling and/or freezing point or range;

(j) electrical and/or heat conductivity; and

(k) the nature and concentration of combustion products.

To assist in identifying all the relevant *hazards* associated with the *dangerous goods* and combustible liquids, a checklist has been included at Appendix 4. This may be used to *record* the *hazards* associated with each type of *dangerous goods* separately or, where multiple *dangerous goods* are to be stored together, the cumulative *hazards*.

Appendix 7 provides some specific guidance on certain *dangerous goods* with particular *hazards*.

Due to the nature of *dangerous goods*, every physical process, even simple ones like materials handling, may constitute a *hazard*.

A rigorous examination *should* be made of all processes to which the *dangerous goods* may be subjected, including, but not limited to those mentioned in *NS 13(2)(c)*.

Useful tools for identifying *hazards* of complex processes are “HAZOP” and “HAZAN” studies carried out by trained personnel.
13.4 Hazards Associated with Storing and Handling

13.4.1 Hazard identification for structures, equipment, systems of work and activities used in the storage and handling of dangerous goods primarily involves the identification of all:

(a) physical components or characteristics which have the potential to harm the safety and health of a person and/or cause damage to property and the environment, either in their own right or in conjunction with the dangerous goods;

(b) systems of work, including normal operating procedures and unusual operating conditions, which could give rise to harm or damage, and

(c) activities which may pose a threat to the dangerous goods.

13.4.2 Occupiers should systematically examine all operations to discover the possible types of failure which could occur and events which may give rise to new hazards or greater risk. Any examination should include consideration of the possibility of human error in the system’s operation.

13.4.3 To assist in identifying hazards, a listing of common hazards associated with the storage and handling of dangerous goods is attached at Appendix 5. Given the immense range of types of premises for the storage and handling of dangerous goods, each with differing features, this is not a definitive list.

13.5 External Hazards

Some activities, systems of work, structures and equipment that are not directly involved with the storage and handling of dangerous goods, may constitute a hazard for that storage and handling. Potential external hazard sources include:

(a) any adjacent dangerous goods storages;

(b) the proximity of other work areas, including on-site offices;

(c) other activities on the premises such as:
 - the operation of plant;
 - the movement of vehicles;
 - deliveries of dangerous goods;
 - personnel movements in normal and emergency situations;
 - visitor access;
 - portable sources of ignition; and
 - the trial of site emergency procedures.
(d) fire *risks*, including concentrations of combustible material or uncontrolled vegetation on or off the *premises*;

(e) activities and installations on neighbouring *premises*;

(f) possible weather conditions, such as temperature extremes, wind, lightning or rainfall, including the potential for flooding;

(g) activities off the *premises* such as the location of a main road, railway line, airport, gas *pipeline*, water main, high voltage power lines and radio transmitters, including mobile phone repeater towers; and

(h) the proximity of sensitive facilities which may be put at *risk* by the presence of *dangerous goods*, such as schools, hospitals, child and aged care facilities, theatres, shopping centres and residences.

13.6 Incident Hazards

It is important to take into account both internal and external experience, where available, such as *dangerous occurrences* and *near misses* that have affected other facilities storing and *handling* similar types of *dangerous goods*. Sources of such information include:

(a) manufacturers or suppliers of the *dangerous goods* or equipment;

(b) fire services; and

(c) *dangerous goods* authorities.

14. RISK ASSESSMENT

The purpose of the *risk* assessment is to:

(a) determine those *risks* that need to be controlled;

(b) assist in making decisions about the order in which *risks should* be controlled; and

(c) develop a schedule for controlling all *risks* as soon as practicable.
14.1 Performing Risk Assessment

14.1.1 When carrying out a risk assessment, the national standard require that account be taken of the information and knowledge gained about the dangerous goods and the matters that affect the safety in relation to the storage and handling of those goods.

14.1.2 There are a number of methods for carrying out a risk assessment.

14.1.3 At premises where complex dangerous goods processes are involved, for example chemical manufacturing processes, it may be more effective to use a more highly structured process such a Hazard and Operability Studies (HAZOP) or Hazard Analysis (HAZAN) to guide the hazard identification and risk assessment process.

14.1.4 In some situations it may be necessary to undertake quantitative risk analysis (QRA) to assist in the understanding of the extent of the risks involved.

14.2 Record Keeping

Outcomes of risk assessments are always required to be documented. Risk assessment records should include:

(a) name(s) of the assessor(s);
(b) date of the assessment;
(c) the premises/area/process to which the assessment applies;
(d) the dangerous goods for which the MSDS or other information has been reviewed;
(e) the controls in place to prevent a risk;
(f) details of the risk identified, including its nature, likelihood and consequences; and
(g) decisions about the risk and why they were made.

14.3 Review of Assessments

14.3.1 A risk assessment must be reviewed and, if necessary, revised if the work activity or processes change significantly or if there is evidence to indicate the assessment no longer adequately assesses the risk/s associated with the use of dangerous goods. The assessment needs to be revised if:

(a) dangerous goods not normally kept are introduced into the premises;
(b) dangerous goods are introduced to a different area or process;
(c) the process or plant is modified;
(d) new information on the hazards of the dangerous goods becomes available;
(e) monitoring indicates inadequate risk control;
(f) incidents or near misses have occurred which may be due to inadequate control; or
(g) new or improved control measures become available or practicable.

14.3.2 Where it is known that circumstances will change, it may be possible able to prepare a risk assessment that takes the projected or known changes into account.

14.3.3 In any case, a risk assessment must be reviewed at intervals not exceeding five years.

- If the assessment remains valid (that is, adequately assesses the risk), simply record the date of review.
- If the assessment is no longer valid, it premises be revised or a new assessment undertaken, depending on how much of the information recorded is still applicable. The results of any revised assessment should be recorded.

15. CONTROL OF RISK

15.1 Principles of Risk Control

15.1.1 All risks with unacceptable consequences require immediate action. It may even be necessary to eliminate the risk in the short term by closing down operations until effective risk control measures are in place.

15.1.2 Control measures should, wherever possible, first be applied to the highest priority risks. This should not, however, preclude attention to those lesser risks that can be easily dealt with at minimum cost.

15.1.3 Effective risk control may require the application of more than one control measure. A hierarchical approach is required by NS 16(2) (see CoP 16.2).

15.1.4 In applying risk control measures, care should be taken to ensure that action taken to correct one risk does not itself initiate another risk. Risk control measures should themselves be subjected to the same processes of hazard identification and risk assessment as all other activities.

Risk control is the process of determining and implementing appropriate measures to control the risks associated with the storage and handling of dangerous goods.
15.2 Hierarchy of Control Measures

The preferred sequence of application of risk control measures is:

(a) elimination;
(b) substitution;
(c) quantity reduction;
—as required by NS 15(2).

Where the above do not achieve the necessary risk reduction, other measures that should be applied are:

(a) isolation;
(b) engineering controls;
(c) administrative controls; and
(d) personal protective clothing and equipment.

15.2.1 Elimination

The most effective method of risk reduction is the elimination of hazards and risks at the source. This includes eliminating either the dangerous goods or the activity which gives rise to the risk:

15.2.1.1 Examples of elimination of dangerous goods include:

(a) use of a physical process rather than a chemical process to clean an object; for example, the use of ultra-sound, high pressure water or even steam cleaning techniques rather than solvent washing;
(b) water based paints or powder coating rather than solvent based;
(c) clips, clamps, bolts or rivets instead of an adhesive;
(d) hot melt or water based adhesives instead of solvent based; and
(e) producing chlorine in-situ by electrolysis rather than having to store or handle other dangerous goods which are comprised of chlorine or its compounds on the premises.

15.2.1.2 Examples of eliminating an activity which gives rise to risk include:

(a) preventing the use of the storage and handling area as a thoroughfare; and
(b) prohibiting the carriage of matches, lighters and the use of spark producing tools in the area.
15.2.2 Substitution

Substitution is the replacement of dangerous goods which present a high degree of hazard with dangerous goods or other substances of lesser hazard, and hazardous activities by less hazardous ones.

15.2.2.1 Substituting dangerous goods by another substance with a lesser hazard can be achieved by using, for example:

(a) non-dangerous goods in place of dangerous goods, such as degreasing with detergent instead of a chlorinated or volatile solvent.

(b) a combustible liquid instead of a Class 3 flammable liquid, such as using dieseline for degreasing rather than kerosene or petrol;

(c) a substance having a higher numerical Packing Group number; such as substituting Packing Group III (PGIII) for PGII or PGII for PGI;

(d) a less hazardous propellant in an Aerosol, such as carbon dioxide Class 2.2 rather than unodorised LPG of Class 2.1;

(e) a Class 2.2 (non-flammable non-toxic gas) as a refrigerant rather than Class 2.3 (toxic gas) such as anhydrous ammonia; or Class 2.1 (flammable gas) such as LPG; and

(f) dangerous goods with a single hazard, as indicated by a single Class without Subsidiary Risk, rather than goods having one or more Subsidiary Risks.

15.2.2.2 Examples of substituting safer activities include:

(a) unitising palletised goods by stretch wrapping rather than flame heat shrink;

(b) unitising packages with a pallet cage rather than stretch wrap in areas where the static electricity generated during wrap and unwrap of plastics film may be a hazard;

(c) using a solid substance in paste or pellet form, or even as a solution, rather than a dusty powder;

(d) applying paint by brush or roller rather than from an aerosol can;

(e) transferring packages by conveyor rather than forklift; and

(f) using non-sparking tools in a hazardous area.
15.2.3 Quantity Reduction

Reducing the inventories of dangerous goods at the premises usually leads to an overall reduction in risk. Methods of inventory reduction include:

(a) careful attention to inventory levels through effective stock control, such as the use of just-in-time ordering and supply arrangements; and

(b) legal, prompt disposal of dangerous goods no longer needed.

Care is necessary, however, to achieve the optimum inventory level. Indeed, further risk can be created by the additional vehicular movements associated with more frequent delivery.

15.2.4 Isolation

Isolation may be described as the total effective separation of one hazard, such as dangerous goods, from another hazard such as other dangerous goods being stored or handled, or from a hazardous activity. Or it may be separation of the hazard from people or from other facilities in need of protection from the hazard.

Isolation may be achieved by enclosing, or separating by distance or by the use of a barrier. Examples of isolation include:

(a) distancing the dangerous goods from protected works, other dangerous goods, people and other property such that interaction is not possible; (see NS/CoP16)

(b) enclosing a hazardous activity;

(c) storing incompatible dangerous goods, such as Class 5.1 oxidizing agents and flammable or combustible materials, in separate buildings that are separated by sufficient distance that interaction is impossible and an incident in one will not involve the other; and

(d) installing a screen wall which is a vapour barrier that has an appropriate fire resistance level (FRL) to provide additional isolation.

Fire resistance level (FRL)' gives a measure of the protection offered by a wall or structure when exposed to fire. The ratings are in terms of structural adequacy, integrity and insulation. The FRL rating system is defined in AS 1530.4.

Further information about screen walls and vapour barriers may be found in AS 1940 and the Building Code of Australia.
The Role of Design in Controlling Risk

The importance of design in anticipating and reducing risk - whether it is risk from dangerous goods or any other source cannot be emphasised strongly enough. When approached properly, design is the most effective tool available to reduce risk to an optimal level. Good design reduces establishment costs. It also helps to avoid:

♦ ongoing operational costs that are inherent to poorly set out premises; and
♦ the more complex systems of work that must be devised to work within the constraints of the premises.

An effective design process means that problems can be anticipated and solved before they become real "bricks and mortar" problems.

Process Design

One of the determining factors in the level of risk that may be present (and require control) where a chemical and physical process is involved is the decision on the actual process or processes to be employed.

Where there is a choice of chemical reactions available that involve dangerous goods, whether as raw materials, intermediates or finished products, each possible reaction pathway will have certain inherent hazards and risks associated with it. Other factors, that will influence the decision to select a particular chemical reaction pathway, include complexity of the process, equipment, efficiency, by products, cost, reliability and energy demand.

Similarly there may be a choice in relation to the physical processes that are available to achieve the same end product. Some processes may involve high temperatures and pressures while the alternatives may involve low temperatures and low pressures; e.g. evaporation compared with freeze drying.

For each of the alternatives, the process hazards must be identified and their relative risks assessed. The processes which result in the lowest overall level of risk should be selected subject to practicability.

Location of Storage and Handling

One of the most effective design factors is locating the facilities where dangerous goods are stored and handled in such a way as to minimise risk factors. There is far greater scope for minimising risk where a purpose built facility is to be located on a greenfield site.

Factors include:
♦ a location well away from other hazards and other sensitive facilities;
♦ sufficient area to allow for isolation of incompatible dangerous goods, spill and firewater retention; and
♦ ease of access, such that transfer and transport risks are minimised.

Design of Structures and Plant

It is far simpler and usually far more effective to incorporate isolation and engineering controls into structures and plant at design stage, than to try to modify existing designs or installations. It may not be practicable to retro fit control features such as natural ventilation or spill containment.

Design Information

It is most important that design be based on information that represents the current state of knowledge.

In addition to technical knowledge about the dangerous goods and processes, and the necessary engineering expertise, there is also the need for knowledge of external factors, which can often be obtained through consultation with:
♦ the Authority;
♦ local government; and
♦ the emergency services.
15.2.5 Engineering Controls

Engineering controls that should be considered for controlling risk in the storage and handling of dangerous goods, include:

(a) totally or partially enclosing of the dangerous goods or external hazard;

(b) providing adequate ventilation, including local exhaust ventilation, to eliminate flammable or harmful atmospheres;

(c) sparging or blanketing exposed liquid surfaces with an inert atmosphere to reduce evaporation and prevent explosive atmosphere formation;

(d) automating processes to eliminate human exposure and error;

(e) fitting sensors and controls for liquid levels, pressure and/or temperature, to minimise loss and formation of hazardous atmospheres, and to eliminate overflow and uncontrolled reactions;

(f) specifying and installing appropriately rated electrical circuitry, fittings and equipment to minimise ignition hazard;

(g) installing lighting which provides ample illumination for the tasks to be performed;

(h) providing adequate spill control to deal with the largest foreseeable spill, and with operation of the fire control system;

(i) constructing effective barriers between incompatible goods;

(j) installing detection systems and alarms for fire and hazardous atmospheres;

(k) incorporating suitable devices to protect installations from external hazards; and

(l) specifying and installing suitable fire control systems.

Engineering controls include structures, plant, equipment and processes which are designed to reduce the hazards associated with the storage and handling of dangerous goods. They achieve this in a number of ways including:

- minimising the generation of dangerous goods;
- containing or suppressing dangerous goods, including their vapours and dusts;
- eliminating, confining or controlling hazardous processes, plant or equipment that may pose some threat to the dangerous goods;
- protecting dangerous goods and installations from external hazards and/or environmental factors such as rain or sunshine; or
- limiting the area of contamination in the event of spills or leaks.

A number of documents, including Australian Standards, listed in Appendix 3, specify engineering controls that can be generically applied to particular Classes of dangerous goods and, in a number of instances, to specific activities.

For dangerous goods storage and handling facilities as described in those documents, implementing those risk controls will in general satisfy the risk control duty for many risks that have been identified.

It is important to be aware that in most of these documents, the risk control systems have been prepared as an integrated package, frequently involving engineering and administrative controls, in addition to personal protection equipment. The application of risk controls from a referenced document is therefore only likely to satisfy the risk control duty imposed by the national standard, if all of the associated controls specified in the document, having a bearing on the particular risk, are adopted.

A particular risk control from a referenced document should not be applied in isolation unless the occupier is totally satisfied that the other risk controls have no bearing on the risk that must be controlled, or other effective controls are introduced based on the risk assessment.
Administrative controls are systems of work than eliminate or reduce risk. They consist of properly designed and implemented work practices and procedures, often used in support of engineering controls. Examples of administrative controls include:

(a) safe work procedures that describe the correct methods for performing all activities associated with storing and handling dangerous goods.

(b) operating procedures that ensure the integrity of structures, plant and equipment is maintained at all times;

(c) training and supervision to provide the necessary knowledge and skill and ensure correct procedures are followed safely;

(d) methods of limiting the number of personnel in the dangerous goods work area, while, where practicable, preventing lone occupancy;

(e) consideration of job rotation of employees with the appropriate skills to limit the period of exposure for individual employees;

(f) procedures to ensure that work involving inspection, maintenance, repair, testing and cleaning is carried out without risk;

(g) good housekeeping, including regular cleaning of contamination from walls and surfaces, dust and drip removal from all work areas, and keeping lids on containers when not in use;

(h) workplace monitoring to ensure safe working conditions are maintained;

(i) procedures for waste disposal and effective decontamination;

(j) well designed and rehearsed emergency procedures;

(k) procedures which ensure that all other risk control measures, including quantity reduction and the use of personal protective clothing and equipment; are applied as necessary; and

(l) controls on activities that are inconsistent with the safe storage and handling of dangerous goods:

Examples of inconsistent activities may include:

- eating, drinking, smoking and the carrying of matches and lighters in contaminated areas;
- sampling of dangerous goods in a storage area where the release of the dangerous goods or its vapour may pose a risk to employees, the dangerous goods and/or the structures, plant and equipment; and
- activities involving the use of heat in a hazardous zone.
15.2.7 Personal Protective Clothing and Equipment

- Personal protective clothing and equipment consists of devices and clothing that provide individual employees with some protection from hazards. It is essentially a last line of defence when all else fails.
- As a matter of principle, personal protective equipment should not be used as the sole control measure except where no other measures are practicable. Its use with other control measures, however, provides additional confidence that risks are controlled, and the required level of protection is provided.
- Examples may include full-length overalls, aprons, abrasion resistant or chemically resistant gloves, dust masks, respirators or breathing apparatus, safety footwear or chemical-resistant boots, goggles or face shields, hard hats, hearing protection and fully encapsulated suits.
- Further guidance on the selection, use and maintenance of personal protective equipment may be found in NS/CoP 26 and the relevant referenced documents in Appendix 3.

15.2.7.1 Despite the use of other control measures, appropriate personal protective clothing and equipment should be provided and worn whenever there is any foreseeable possibility of contamination or harm to personnel arising from the storage and handling of dangerous goods. Personal protective equipment should provide full protection as required for normal work activity, and adequate defence against possible unplanned events and emergencies.

Situations where use of suitable personal protective equipment may be necessary include:

(a) where it is not technically feasible to achieve adequate control by other means;

(b) where personal protective equipment is necessary to safeguard safety and health until such time as adequate control is achieved by other means, for example, where urgent action is required because of plant failure;

(c) during routine maintenance operations where the infrequency and small number of people involved may make other control measures impracticable; or

(d) where, even though a safe working environment exists under normal conditions, protection may be required from acute hazards in the event of sudden plant failure or other unexpected incident.

15.2.7.2 MSDS will normally contain recommendations on the selection and use of personal protective equipment for the particular dangerous goods. This advice should be followed unless the occupier determines, by applying the risk management processes of the national standard, and in consultation with employees, that other protection measures would be more appropriate.

15.2.7.3 An effective personal protective clothing and equipment system requires considerable effort by the employer to ensure that:

(a) protective devices are selected which are suitable for the individual and give the required level of protection from the risks associated with the particular task;

(b) only clothing and equipment meeting Australian Standards, or other recognised standards, is utilised;

(c) use is enforced when required;
(d) equipment that is provided is readily available, clean and functional, and employees are individually fitted;

(e) there is proper instruction on the need for, and correct use of, personal protective clothing; and

(f) an effective system of cleaning and maintenance is devised, including maintenance by appropriately trained staff in accordance with a maintenance and servicing program.

15.3 Implementation of Risk Control Measures

15.3.1 When the occupier has determined what risk control measures are to be implemented, a mechanism needs to be put in place to ensure they are applied and practised without exception on an ongoing basis.

15.3.2 Where there a great number of risk controls to be implemented, including administrative controls, consideration should be given to developing and implementing a further administrative control to keep track of and monitor compliance with the all the other controls that have been put in place. The development of such an administrative control is more commonly known as a Safety Management System.

15.4 Design, Operation, Maintenance and Repair

The principles of eliminating hazards giving rise to risk or reducing the risk as far as practicable must be applied to all areas and activities associated with the storage and handling of dangerous goods.

15.4.1 All structures and plant associated with the storage and handling of dangerous goods should be:

(a) designed in such a way that the risks associated with each item are eliminated as far as practicable, while ensuring that the risk of the total system is minimised;

(b) manufactured to a high standard within the design specification, and from quality, durable materials which will not be adversely affected by the planned storage and handling of the dangerous goods;

(c) installed only after all hazards associated with the installation have been identified, the risks assessed and control measures implemented as required;

- Over time, there is an ever increasing risk that familiarity in working with a hazard will lead to complacency and shortcuts with potentially tragic results.
- It is recommended that the occupier explore with employees or the employee representative, creative ways to guard against this.
(d) commissioned only after they have undergone thorough testing to ensure that any unpredicted hazards have been identified, control measures implemented as required, and agreed procedures developed to ensure they can be operated safely;

(e) operated only in accordance with the agreed procedures by personnel who have received appropriate training (see CoP 15.4.2);

(f) maintained and repaired as required to ensure that no additional hazards or increased risk arise due to normal operation, wear and tear and breakdown; and

(g) maintained, repaired and, when the need arises, decommissioned in a manner which does not introduce additional risks or, where this is not practicable, the additional risks are minimised and controlled.

15.4.2 NS 15(4)(b) extends the requirements of NS 15(4) to all other installations, activities and materials at the premises that might in any way put at risk the storage and handling of dangerous goods.

15.4.3 Adverse interaction with the public [NS 15(4)(c)] should be minimised by giving attention to both current and projected neighbouring activities. The need for further risk control measures should be assessed whenever there is any change in use of other public facilities and premises in the vicinity.

DUTIES OF OCCUPIERS - SPECIFIC

16. SEPARATION BY PHYSICAL MEANS

16.1 Physical separation by isolation of dangerous goods from protected works, other dangerous goods storage and handling areas, people and other property, is the principal method by which risks to those other occupancies are minimised.

16.2 Isolation may be achieved by distance, the use of effective barriers or a combination of both.

16.2.1 As far as practicable, separation distances should be determined and applied in such a way that the resultant risk to the other occupancy, as determined through the risk assessment process [NS/CoP 14] would not require the application of additional control measures. Factors to consider in determining separation distances include:

(a) the types of hazards exhibited by the dangerous goods and the risks they pose to the other occupancy;

(b) the quantity of dangerous goods stored and handled in the work area;

(c) the type of installation and the processes applied to the dangerous goods in the work area and their associated hazards and risks;

(d) all other activities in the work area, which may increase the risk; and

(e) any control measures in place which will reduce the risk.

Separation actually fulfils a dual purpose:

- protecting the other occupancies from the dangerous goods;
- protecting the dangerous goods from the other occupancies

27
Where barriers are used in lieu of, or in conjunction with, distances to achieve required separation, the protection they provide must be effective with the particular dangerous goods. Factors to consider include:

(a) the types of hazards exhibited by the dangerous goods and the risks they pose to the barrier;

(b) the extent of vapour barrier required and its effectiveness in varied climatic conditions.

(c) appropriate levels of fire resistance (FRL) to be provided, depending on the potential heat load from internal or external incidents; and

(d) structural sufficiency to withstand weather and any overpressure resulting from internal or external incidents.

Most Class-specific Australian Standard as listed in Appendix 3 allow separation distances to be measured around suitable barriers, which are variously referred to as vapour barriers, screen walls and fire walls.

Minimum requirements are specified, as are conditions of use. These should be regarded as minimum requirements unless there are particular hazards associated with or external to the area which necessitate additional features or conditions.

Further advice on the use of screen walls can be found in Australian/New Zealand Standard AS/NZS 3833 The Storage and Handling of Mixed Classes of Dangerous Goods in Packages and Intermediate Bulk Containers, and in Australian Standard AS 1940 The Storage and Handling of Flammable and Combustible Liquids, which uses the term fire wall for this purpose.

‘FRL’ ('Fire Resistance Level'), represents the times in minutes, determined in accordance with AS 1530.4 Methods for Fire Tests on Building Materials, Components and Structures; for (a) structural adequacy, (b) integrity and (c) insulation, and expressed in that order, for example 60/60/60. (NOTE: Where an FRL is required, reference should be made to the Building Code of Australia (BCA) for guidance.)
SEGRESSION OF DANGEROUS GOODS

17.1 To prevent dangerous interaction, *dangerous goods should* be kept apart (segregated) from all other goods with which they are not compatible.

17.2 Segregation can be achieved by storing and *handling* incompatible goods in separate areas or by the use of physical barriers or distances within the same area.

17.3 As a general rule, *dangerous goods should* not be stored above or below other goods with which they may interact.

17.4 When segregating incompatible goods, it may also be necessary to prevent mingling of spilled materials by the use of separate compounds —see NS/CoP 20.

17.5 Systems and procedures *should* be developed and enforced, and personnel involved in the storage and *handling* of *dangerous goods should* be trained and supervised to ensure segregation is maintained at all times.

18. **STABILITY OF DANGEROUS GOODS**

18.1 Many *dangerous goods* are highly reactive, unstable or self-reactive except under controlled conditions. The application of NS 18 will ensure that those controlled conditions are maintained. To meet the requirements of this clause, the *occupier should* ensure that:

(a) product specifications have been obtained from the manufacturer or supplier; and

(b) *dangerous goods* are kept and maintained in accordance with supplier specifications until they are ready to be used.

18.2 NS 18(2) provides a necessary exemption from the stability requirement for *dangerous goods* that are about to be consumed or used in manufacture. In such situations, the presence of inhibitors or phlegmatizers may prevent required reactions from taking place. Care needs to be taken to ensure the instability and reactions take place only under controlled conditions.

19. **CONTAINERS FOR BULK DANGEROUS GOODS**

19.1 Integrity of Container

19.1.1 Given the *risks* associated with leaks from *bulk containers*, particular care *should* be given to ensuring that the integrity of the storage and its associated *handling* system is maintained in all normal, and foreseeable abnormal, operating conditions.

19.1.2 Factors to be considered in ensuring the integrity of the *container* include:

(a) structural soundness to withstand stresses from the product being stored;
(b) stability, rigidity and suitability of foundations;
(c) stresses imposed by pipework and other attachments;
(d) atmospheric loadings, from sun, wind and rain;
(e) the effects of external impacts; and
(f) the extent to which corrosion is to be allowed for over the service life of the container.

Impact protection
The initial design of a bulk container would normally be based on loading considerations. This would not adequately provide for the effects from external impacts. For example, a wall thickness of 2–3 mm for a vertical steel storage tank for flammable liquids may be sufficient to satisfy the criteria for structural integrity. However a 2 mm wall thickness is unlikely to withstand a localised impact like that from the sharp corner of a truck tray reversing into the tank.
For other aspects of impact protection, see CoP 21.

19.1.3 The design, layout and location of pipework associated with bulk storage should be subjected to rigorous risk assessment.

19.2 Location

19.2.1 Bulk containers should be located so that the minimum separation from other occupancies, as determined from NS/CoP 16, is provided.

19.3 Underground Tanks

19.3.1 Underground tanks should be constructed, located and protected so as to eliminate risks and threats to the environment from:
(a) failure, usually due to corrosion or stress loading, allowing the escape of dangerous goods into the water table; and
(b) spills from above ground pipework and filling points.

19.3.2 Guidance on the various aspects of underground tank installations can be found in Australian Institute of Petroleum CP4 Code of Practice for Design, Installation and Operation of Underground Petroleum Storage Systems. The guidance in that code has been developed for petroleum storage systems and care should be taken when it is being considered for application to other dangerous goods.

19.3.3 Underground storage installations for bulk dangerous goods and combustible liquids are usually subject to additional controls from environmental authorities and local government.
20. **SPILLS AND CONTAINMENT**

20.1 The national standard requires that all spills of *dangerous goods*, other than gases, be contained on the site. The extent to which this will require the installation of physical spill containment devices will depend on many factors including:

(a) the nature of the *dangerous goods* (whether liquid or solid);

- if liquid, whether it is mobile or viscous;
- if solid, whether or not it may become molten in a fire;

(b) the quantity of the *dangerous goods*;

(c) the size of the largest *container* or reasonably foreseeable largest spill;

(d) the potential impact should the *dangerous goods* escape to the environment; and

(e) whether or not it is necessary to provide for the management of firewater from an incident.

20.2 Spill containment for liquids, including molten solids and firewater, may be accomplished by:

(a) grading the surface so that all spills are contained by the contours;

(b) *bunding* the area where *dangerous goods* are stored or handled to form a compound;

(c) the provision of drains to an on-site secure catchment system such as a pit or pond; or

(d) a combination of any of the above.

20.3 The design of a spill containment system *should* ensure that:

(a) separate spill containment is provided for goods that are not *compatible*;

(b) the *capacity* of the containment is sufficient for the volumes which may need to be contained in the worst possible incident;

(c) all spills can be safely held until cleaned up;

(d) all the materials of which it is constructed, together with any materials used for absorption:

- are *compatible* with the *dangerous goods* and other materials in the vicinity; and
- will prevent contamination of groundwater or soil;
(e) movement of spilled material or firewater into, or within, the containment system will not increase the spread or magnitude of an incident;

(f) system integrity will be maintained in any foreseeable incident;

(g) the system will not become ineffective due to stormwater, or to any other activities in the area; and

(h) if necessary in the event of an incident, contaminated firewater can be removed.

20.4 The immediate action in case of a spill required by NS 20(b) will normally only be achieved through implementation of the emergency preparedness requirements and guidelines of NS/CoP 24.

20.5 Specific discussion of containment of spills from underground storages may be found in CoP 19.3.

21. IMPACT PROTECTION

21.1 Measures required to prevent or control impact will normally depend on the situation and the nature of the risks. The normal hierarchy of controls should be applied, whereby the potential threat of impact is removed, where practicable, by, for example relocating either the dangerous goods storage or the adjacent roadway.

21.2 Impact protection measures may be necessary for:

(a) structures containing dangerous goods;

(b) plant and equipment including storage and process vessels, associated pipework, pumps and controls;

(c) storage areas (including transit storage) for packages and IBCs, and associated shelves and racks; and

(d) exposed parts of the fire protection system

21.3 The protection, which may be achieved by the installation of crash protection measures such as bollards and guard rails, should be designed to:

(a) absorb the energy of any reasonably foreseeable impact, having regard to the possible mass and velocity of the object; and

(b) minimise the likelihood of injury to drivers and/or passengers and damage to vehicles from the impact.
22. TRANSFER OF DANGEROUS GOODS

22.1 The transfer system should be designed and operated in such a way as to achieve safe transfer, taking into account relevant factors including:

(a) the hazards associated with the dangerous goods and the proposed method of transfer;

(b) required flow or transfer rates and quantities; and

(c) external hazards and adjacent activities.

22.2 Methods for preventing spills and overflow include:

(a) overflow protection equipment on receiving vessels;

(b) flow and pressure regulators on pipework or pumps;

(c) interlocking of valves and switches; and

(d) systems for detecting losses from pipework and fittings, such as static pressure loss detectors, measurement to determine losses in transfer or external sensors.

22.3 Static electricity generation is of particular concern when transferring non-conductive flammable and combustible liquids, finely divided combustible powders and any other dangerous goods with a flammability hazard. See CoP 25.4 for discussion on avoidance of static electricity.

22.4 Vapour emissions resulting from transfer can be minimised by:

(a) the use of enclosed transfer systems;

(b) keeping lids open only for the minimum period required for transfer;

(c) minimising exposed surface areas;

(d) avoidance of splash filling;

(e) minimising the temperature of liquids being transferred; and

(f) providing extraction ventilation at all sources of vapour.

22.5 Compatibility is required for all items that may need to interconnect, including:

(a) hoses, couplings and associated fittings;

(b) earthing connections;
(c) vapour recovery connections; and
(d) telemetry where required.

22.6 Further details on avoiding ignition sources is provided at CoP 25.

23. FIRE PROTECTION

The most important aspect of fire protection is that of fire prevention. That will be achieved by applying the other parts of the national standard and this national code of practice, in particular by adhering to the hazard identification, risk analysis and risk control requirements of NS/CoP 13–15.

In this part:
- CoP 23.1 relates to NS 23(a)
- CoP 23.2 relates to NS 23(b)
- CoP 23.3 relates to NS 23(c)
- CoP 23.4 provides detailed requirements for fire fighting equipment

23.1 Provision of Fire Protection and Fire Fighting Equipment

23.1.1 The Building Code of Australia specifies minimum requirements for fire protection for different types of buildings. For dangerous goods storage and handling, additional fire protection will usually be required to provide protection from their particular hazards and associated fire loads.

23.1.2 Where appropriate, especially for large or high risk premises, fire protection requirements should be implemented in consultation with the relevant emergency services authority. Consultation should also occur before any alterations are made to fire protection systems.

23.1.3 The fire protection system should provide the capacity to quickly control and extinguish any fire that may occur involving the dangerous goods. It should also effectively protect the dangerous goods from any nearby fire. To achieve this, fire protection system design should take account of all of the numbered issues in NS 21(a), as discussed in CoP 23.1.3.1–4:

23.1.3.1 The fire load of the dangerous goods will depend on the particular hazards of the dangerous goods and combustible liquids, and on the quantities being stored and handled in the particular work area. Other factors which may influence the fire load and the amount and type of protection required include:

(a) the storage configuration, height and density of the dangerous goods;
(b) the location, design, type of construction and total floor area of the building or work area;
(c) the nature, including materials of construction, of any structures, plant and equipment; and

- It is also essential that all components of the transfer system are compatible with, or suitably protected from, the goods being transferred.
- Particular care is needed with all components of pumps and valves used for the transfer of corrosive materials.
(d) the type of operations in the building or work area, with particular attention to:

- whether the goods are bulk, or in open or closed packages; and
- what type, if any, of processing takes place;

23.1.3.2 Features to consider with respect to other exposures on the premises include:

(a) other dangerous goods installations and operations;
(b) non-dangerous goods operations;
(c) on-site facilities such as office areas and amenities;
(d) mobile hazards such as vehicles;
(e) relevant environmental considerations; and
(f) waste.

23.1.3.3 Similar considerations apply to exposures from other premises. In addition attention should be given to the types of structures present, and to current and possible future activities on those premises:

23.1.3.4 NS 23(a)(iv) primarily relates to the compatibility of the fire protection system and fire fighting equipment with those other goods.

23.1.4 Other Design Considerations

23.1.4.1 Fire protection systems for use with dangerous goods may be independent or, where permitted by the appropriate Authority, integrated with other fire protection systems on the premises.

23.1.4.2 Consideration may be given to integrating fire protection systems over more than one premises, but only where: there is a mutual benefit, it is permitted by the Authority and emergency services authority and a binding agreement is entered into by all parties.

23.1.4.3 All firefighting appliances and equipment at the premises should be compatible with that of the relevant emergency services authority at all essential interfaces.

23.1.5 Water Supply

23.1.5.1 A reliable water supply will be required for the fire protection system at most premises where dangerous goods and/or combustible liquids are stored and handled. The supply must be sufficient to supply both the fire protection equipment at the premises and such additional equipment as may be used by the emergency services authority to control a fire at the premises.
23.1.5.2 Where sufficient supply is not available from the main water supply, it may be necessary to supplement this with additional water storage and/or pumps. Alternatively, where it is permitted by the appropriate regulatory authorities, additional fire service water may be obtained from reliable alternative sources such as rivers or dams.

23.1.5.3 The adequacy of the water supply should be checked with the emergency services authority. Specific guidance is provided in AS 1940 and AS 2419.

23.1.5.4 The provision of adequate water supply and pressure for large-scale firefighting may necessitate the installation of booster systems in consultation with the emergency services authority. This may require:

(a) installation of fixed or portable pumping equipment; or

(b) an appropriate number of booster connections and feed hydrants, together with an approved hard-standing area for emergency services pumping equipment.

23.1.6 Fire Alarm Systems

Fire alarm systems should be designed and installed in accordance with the relevant Australian Standards as listed in Appendix 3, or as agreed with the emergency services authority, such that:

(a) automatic systems are also capable of being operated manually using clearly identified manual alarm activators at convenient and safe locations near work areas;

(b) the alarm signal is sufficiently distinguishable from any other signals to permit ready recognition, and is clearly audible throughout the premises;

(c) where high noise levels or the use of protective clothing may prevent the recognition of an alarm signal, an effective alternative alarm system, such as a visual system, is also installed; and

(d) the system remains operable when the main power supply fails.

23.2 Installation, Testing and Maintenance

Installation, testing and maintenance of fire protection and fire fighting equipment should be in accordance with the manufacturers’ specifications. The results of testing should be recorded, and records kept for the life of the equipment.

23.3 Inoperative Fire Equipment

When one or more components of the fire protection or fire fighting equipment is unserviceable or inoperative, and risks cannot be controlled as required by NS 23(c), it may be necessary to shut down hazardous processes and operations until the equipment has been restored.

23.4 Fire Fighting Equipment

23.5 Compliance with Australian Standards

All fire fighting equipment should comply with the appropriate Australian Standards listed in Appendix 3.
23.5.1 Location of firefighting equipment

Firefighting equipment should be located so that:

(a) all dangerous goods and other items being protected can be directly reached by the firefighting medium, (particular attention is necessary for high rack storage);

(b) it is readily accessible in the event of an incident, preferably being sited adjacent to exit doors or on exit routes;

(c) it is in a conspicuous position; and

(d) it is convenient to, and readily accessible from, the risk being protected.

23.5.2 Identification of firefighting equipment

All firefighting equipment should be suitably labelled in accordance with the relevant Australian Standards and to the satisfaction of the relevant emergency services Authority.

To assist with visibility and identification, additional signs complying with Australian Standard AS 1319 Safety Signs for the Occupational Environment may be installed.

23.5.3 Fire Hose Reels

23.5.3.1 Hose reel systems should be provided and located:

(a) on every storey of a building, used to store and handle dangerous goods, where the total floor area exceeds 300 m²;

(b) so that, allowing for all obstacles, every location in the building can be reached by at least one hose; and

(c) so that it is possible to reach all installations, including to the top of rack storage, with discharge from at least one fire hose reel.

23.5.3.2 Hose reels should:

(a) be provided with a hose length of 36 m;

(b) have appropriate signage; and

(c) if installed in an environment where it may be damaged, protected by a cabinet or other suitable means.

23.5.3.3 Where foam hose reels are installed, they should be capable of producing satisfactory foam that meets the manufacturer’s specifications, and is suitable for the risks being protected. A hose reel that is equipped with foam making capabilities should be identified by appropriate signage.
23.5.4 Fire Hydrants

23.5.4.1 Hydrants should be equipped with hose, branch and nozzle except where it is not appropriate and prudent to do so, for example:

(a) where this equipment may be susceptible to theft; or

(b) there are no personnel properly trained to operate them.

23.5.4.2 External hydrants should be:

(a) positioned convenient to, but a safe distance from, exit doors and hard-standing areas;

(b) easily visible, with appropriate identification signs; and

(c) capable of providing the appropriate coverage.

23.5.5 Monitors

23.5.5.1 Monitors should be installed in accordance with the manufacturers’ specifications and would normally be located 15–30 m from the facility to be protected. Where, for any reason, monitors are required closer to the facility, or where the expected heat flux may exceed 2 kW/m², the need for radiant heat protection for personnel at the premises should be taken into account. In such situations, monitors would normally be operated by remote control.

23.5.5.2 Monitors should be capable of applying the required density and quantity of water under adverse wind conditions. This requires at least 50 per cent more water flow than under still conditions.

23.5.5.3 Nozzles may be fixed, or adjustable to provide straight stream, spray, fog or foam as required, so that the facility is suitably protected but not damaged by a solid stream at shorter ranges. If adjustable, the means of operation and control of direction and/or spray pattern should be operable from a safe remote location.

23.5.6 Automatic Sprinkler Systems

Sprinkler systems may comprise:

(a) individual-actuation sprinklers;

(b) deluge sprinklers;

(c) foam sprinklers; or

(d) a combination of any of the above.
23.5.7 Portable Fire Extinguishers

23.5.7.1 Suitable and sufficient portable fire extinguishers should be provided, located and identified in accordance with AS 2444. Extinguishers should be:

(a) clearly visible, readily available, unobstructed, convenient to the relevant risk; and

(b) not adversely affected by hazardous or climatic conditions.

23.5.7.2 Where powder-type and foam extinguishers are likely to be used together in an emergency, they should be compatible.

23.5.7.3 Particular care needs to be taken where there are special risks.

The following examples may be helpful in the selection of fire extinguishers for special risks.

- Foam extinguishers must be suitable for the dangerous goods. In particular, alcohol-compatible foam should be used for alcohols and other polar (water miscible) solvents.
- Carbon dioxide extinguishers may be effective for the protection of electrical equipment and will minimise clean up and damage to the system, but have a poor ‘knock down’, short discharge range and may be ineffective where there is significant air movement. Dry powder or vapourising liquid may give more reliable extinguishment.
- Carbon dioxide and acidic extinguishers such as those based on ammonium phosphate should not be used where there are cyanides present.
- Carbon dioxide extinguishers should not be used on fires involving magnesium or titanium metals.

23.5.7.4 Fire extinguishers should be maintained in accordance with the relevant provisions of AS 1851.1.

24. EMERGENCY PREPAREDNESS

24.1 Emergency Procedures and Equipment

Emergency procedures and equipment for dealing with emergencies are required for all premises where dangerous goods are stored and/or handled. In addition, the national standard requires that a formal emergency plan be developed where there are dangerous goods in quantities greater than those listed in NS 24(2).

24.1.1 Emergency Procedures

24.1.1.1 Emergency procedures, for safely handling all foreseeable emergencies such as fire, spillage, vapour release, uncontrolled reaction and external threats, are required for all dangerous goods premises.

24.1.1.2 Emergency procedures will vary in content to suit the requirements of the premises, but should include:

(a) the means of raising the alarm;

- The extent of emergency procedures required will depend on the size and complexity of the premises, the types and quantities of dangerous goods and the processes involved.
- Some of the most effective emergency procedures are simple one page documents in point form, suitable for display on signs or carrying by employees or visitors as a pocket card.
- The occupier should ensure that all employees are trained in the emergency procedures and that they are well rehearsed.
(b) the method for the summoning the primary combat agency for dealing with a dangerous occurrence, (and necessary contact details); and

(c) actions to be taken by employees in an emergency to ensure the safety and health of all personnel and to minimise damage to property and the environment.

24.1.3 Equipment required to contain and clean up incidents will vary with the types and quantities of dangerous goods. Examples of emergency equipment include:

(a) overpacks such as oversized drums for containing leaking containers;

(b) absorbent material suitable for the substances likely to be spilled;

(c) booms, plates and/or flexible sheeting for preventing spillage from entering drains and waterways;

(d) neutralising agents such as lime or soda ash;

(e) suitable pumps and hoses for removing spilled material;

(f) hand tools such as mops, buckets, squeegees and bins; and

(g) suitable protective clothing and equipment to protect the safety and health of personnel involved in the clean up.

24.2 Clause 24(2) of this national standard sets out the threshold levels for the Emergency Plan requirements.

24.3 Emergency Plans

24.3.1 Purpose and Scope

24.3.1.1 The purpose of the emergency plan is to plan for, and thus minimise the effects of, any dangerous occurrence or near miss at premises where larger quantities of dangerous goods are stored and handled.

24.3.1.2 The emergency plan should coordinate all aspects of emergency management on the premises.

24.3.2 Development and Consultation

24.3.2.1 When developing the emergency plan, the occupier should, in all cases, consult with employees, employee representatives and the relevant emergency services Authority.

24.3.2.2 Where it is possible that emergencies may impact beyond the perimeter of the premises, consultation should also take place with anyone in neighbouring premises likely to be affected, and with the local counter disaster organisation.
24.3.2.3 The emergency plan should be readily understandable to employees and emergency services.

24.3.3 Content

24.3.3.1 The emergency plan should be comprehensive, coordinating all aspects of emergency management, including:

(a) copies of all emergency procedures;
(b) responsibilities of key personnel in managing all types of emergencies;
(c) what circumstances activate the plan;
(d) systems for raising the alarm;
(e) estimating the extent of the emergency;
(f) summoning emergency services authorities in the event the emergency is, or has the potential to become, a dangerous occurrence;
(g) protection of personnel, including detailed evacuation procedures and methods for accounting for all people at the premises;
(h) isolation of the emergency area to prevent entry by non-essential personnel;
(i) roles of on-site emergency response teams;
(j) containment of any spillage;
(k) need for fire water retention to ensure that contaminated firewater cannot enter waterways, drains or ground water;
(l) disconnection of power supplies and other energy sources, except where these are required to maintain safety of a critical operation or to run emergency equipment such as fire booster pumps;
(m) prevention of dangerous goods or contaminated material of any kind from entering drains or waterways;
(n) provision of relevant information and assistance to the emergency services Authority, both in anticipation of emergencies and when they occur;
(o) maintenance of site security throughout the emergency;
(p) provision for dealing with the public and the press; and
(q) site rehabilitation requirements.
24.3.4 Off-Site Considerations

24.3.4.1 Where any reasonably foreseeable incident may have effects beyond the boundary of the premises, the emergency plan should also address managing the off-site effects.

24.3.4.2 Where off-site effects may occur, the plan should provide for giving necessary warnings or communications to neighbouring premises.

24.3.4.3 Where emergency plans include agreements with the occupiers of neighbouring premises to provide mutual aid in emergency situations, these arrangements should be formalised, in consultation with the emergency services, to ensure their effectiveness.

24.3.4.4 Where emergency plans include activities that involve persons who reside or work adjacent to the premises, the relevant parts of the plan should be communicated to those persons.

24.3.5 Implementation

24.3.5.1 The contents of the emergency plan should be communicated to all employees and affected neighbours. Copies, or relevant extracts, should be provided to emergency services.

24.3.5.2 All employees should be suitably trained in their roles and expectations under the emergency plan.

24.3.5.3 The emergency plan should be tested when first devised, after each modification and at suitable regular intervals. Practice drills and simulated emergencies should involve all employees and, as far as practicable, emergency services and anyone else likely to be involved in an incident.

24.3.5.4 The emergency plan should be reviewed and updated on a regular basis, and whenever there is a change of risk on or off the premises, updated information becomes available or a possible deficiency is identified.

24.4 Clause 24(4) of this national standard requires the occupier to provide the emergency services authority with a copy of the emergency plan.
25. IGNITION SOURCES IN HAZARDOUS AREAS

25.1 Hazardous Areas

Within a dangerous goods storage and handling environment, flammable or combustible gases, vapours, dusts and mists may be generated or evolve. These can for explosive mixtures with air in certain proportions.

An area where an explosive atmosphere may occur continuously or intermittently, presenting a risk to safety, is described as a ‘hazardous area’.

Hazardous areas include all storage and handling areas for:
- dangerous goods with a Class or Subsidiary Risk of 2.1, 3, 4 or 5; and
- goods which may generate combustible dusts.

25.1.1 The rules, for determining and designating different levels of hazardous areas, are detailed in AS 2430 Part 1– classification of areas where combustible dusts are or may be present and AS/NZS 61241.3 Electrical apparatus for use in the presence of combustible dusts – classification of areas where combustible dusts are or may be present.

25.1.2 AS/NZS 2430, Parts 1 – 9 describes specific situations where hazardous areas may occur in practice.

25.2 Ignition Sources

25.2.1 Examples of ignition sources that may present a risk in areas where dangerous goods are stored and handled include:

(a) naked flames, such as those associated with blow torches, shrink wrapping equipment, stoves, gas or oil heaters, pilot lights, driers, lighters and matches;

(b) incandescent materials such as glowing coals or lighted cigarettes, cigars and pipes;

(c) arcs from electric welding or arcing contacts on electric motors and switchgear;

(d) static sparks, as further discussed in CoP 25.4;

(e) mechanical sparks from grinding, or from objects striking together;

(f) friction from moving parts, for example fan blades rubbing nearby surfaces;

(g) heat from appliances or from chemical or biological reaction vessels;

(h) internal combustion engines and vehicles;

(i) radio transmitters and mobile phones; and

(j) all electrical fittings and equipment (including wiring, power points, switches, lighting, appliances and battery forklift trucks) which are not rated for safe operation in the hazardous area.

25.3 Control of Potential Ignition Sources

25.3.1 Controls should be in place to ensure that ignition sources are not introduced into, or within 3 m of, a hazardous area, except under controlled conditions. Within those
areas no one should smoke or have in their possession any substance or article with the potential to be an ignition source.

25.3.2 When used in a hazardous area, all electrical installations, including lighting, should meet the provisions of AS 3000 for electrical installations in hazardous areas.

25.3.3 Industrial trucks operating in a hazardous area should conform with the guidance contained in Appendix 9.

25.3.4 Precautions during repairs

25.3.4.1 An occupier should not permit the use of a flame or any other source of ignition during repairs on, or adjacent to, a hazardous area unless:

(a) the area where the repair work is to be carried out has been freed of possible hazards, including toxic or flammable gases and vapours, and combustible dusts;

(b) personnel involved in the operation are given precise, detailed instructions on the precautions to be taken before and while the flame or other ignition sources are in the area: and

(c) additional controls are in place to ensure a dangerous situation does not arise.

25.3.4.2 A formal work permit system is recommended for all except routine work of a non-hazardous nature. A work permit system should be a mandatory inclusion in the safe management system of premises where more than minor quantities of dangerous goods are stored and handled. For work involving the introduction of an ignition source into a hazardous area, this permit is usually referred to as a ‘hot work permit’.

25.4 Avoidance of Static Electricity

25.4.1 The occupier should ensure that, in all hazardous areas, appropriate measures are taken to minimise the generation of static electricity and to safely dissipate any static that does occur from any source.

25.4.2 In all hazardous areas:

(a) all tanks, pipework, transfer systems and process plant should be earthed, or otherwise protected, in accordance with Australian Standard AS 1020;

(b) liquid transfer rates and splashing should be minimised;

(c) consideration should be given to the use of anti-static additives in non-conductive liquids, and to the wearing of conductive clothing, especially footwear; and

Additional controls may include:
- atmospheric monitoring;
- isolation of switches, pipework and valves;
- experienced, close supervision;
- additional fire protection measures
- Some Australian Standards, such as AS 1940, provide detailed guidance in relation to authorising and carrying out ‘hot work’ in areas where dangerous goods are stored and handled.

Static electricity may be generated by a wide variety of sources including:
- any movement (such as pouring, pumping, stirring; or high velocity flow) of dry powders and liquids that have a low electrical conductivity;
- moving vehicles, equipment or components of plant;
- movements of personnel, especially when wearing clothing and footwear of low conductivity;
- the fitting or removal of clothing, including protective clothing;
- the application or removal of plastic wrap;
- particulate or aerosol spray, including spray painting or the rapid discharge of a carbon dioxide extinguisher;
- the manual carrying of liquids in a non-conductive container or one with an insulating handle; and
- movement of packages by conveyor or by trolleys with non-conductive wheels.

For further controls on transfer of dangerous goods, see NS/CoP 22.
(d) operating procedures should include instructions for avoiding the risks associated with static electricity.

26. SAFETY EQUIPMENT

26.1 Safety equipment for use with dangerous goods should:

(a) be compatible with, or suitably protected from, the dangerous goods with which it may come in contact; and

(b) comply with relevant Australian Standards as listed in Appendix 3.

- The equipment required to control risk should be determined through the control of risk process detailed in NS/Cop 16.
- Absorbent and neutralising materials must be effective with, and not react dangerously with, the dangerous goods.
- Clean-up equipment that may be used in hazardous areas should be carefully selected to ensure it does not introduce additional hazards. For example:
 - non sparking shovels and flame proof pump motors may be required for collecting spilled material; and
 - PPE that introduces additional static hazards should be avoided.

27. CONTROL OF HAZARDOUS ATMOSPHERE

27.1 The control of risk arising from a hazardous atmosphere may be achieved by:

(a) preventing the entry of contaminants into the atmosphere by the use of totally enclosed systems, or by blanketing an exposed surface with an inert atmosphere;

(b) extracting the contaminants from their sources through extraction ventilation;

(c) reducing the concentrations of contaminants by introducing uncontaminated air, either through general ventilation or by purging;

(d) limiting the introduction of processes and equipment into the area where the hazardous atmosphere may exist to those which will not constitute a risk in that atmosphere;

(e) ensuring appropriate personal protective clothing and equipment is worn by all personnel entering the area; or

(f) a combination of any of the above.

27.2 Where the possibility of a hazardous atmosphere has been identified by the risk assessment process, atmospheric testing and monitoring may need to be carried out to ensure a safe atmosphere is maintained.
27.3 Ventilation Considerations

27.3.1 Local exhaust ventilation from each significant source of contamination is usually a more effective means of preventing build-up of a harmful atmosphere than is an increase in general ventilation.

27.3.2 Where a storage area for closed containers of dangerous goods has adequate openings to the open air, natural ventilation may be sufficient. In other circumstances, a mechanical ventilation system may be required.

27.3.3 General ventilation should provide enough entry and exhaust registers of sufficient capacity to provide air flow throughout the area, and to prevent pockets of harmful atmosphere from developing.

27.3.4 Where there are dangerous goods with vapours heavier than air, exhaust air should be removed from the lowest point above any spill containment while fresh air is introduced from above.

27.3.5 Fresh air should always be drawn from a source uncontaminated by exhaust air or other pollutants. The exhaust should be discharged where it will not cause other risks, and in compliance with environmental legislation concerning discharges to atmosphere.

27.4 Purging

27.4.1 Purging involves introducing air or an inert gas into a confined space to displace oxygen and/or flammable, toxic or corrosive fumes.

27.4.2 Purging with inert gas is most commonly used above the liquid surface of reaction, mixing or bulk storage vessels to prevent surface oxidation or the formation of an explosive atmosphere.

27.4.3 Empty vessels that have contained dangerous goods may require purging with air prior to entry by personnel, or carrying out maintenance activities.

28. LIGHTING

The occupier should ensure that whenever people are at the occupier’s premises, adequate natural or artificial lighting is provided to all work areas and access ways they may be required to use, including internal roads, pathways and corridors that lead to and from areas, rooms or buildings where dangerous goods are stored or handled.

28.1 The occupier should ensure that:

(a) the only artificial lighting used in a room or space where dangerous goods are stored or handled is electric lighting:
(b) when used in a **hazardous area**, electric lighting *should* meet the provisions of AS 3000 for electrical installations in **hazardous areas**. –see **NS/CoP 23**.

28.2 Internal lighting *should* meet the relevant parts of AS 1680.

28.3 Consideration *should* be given to the need for emergency egress lighting and exit signing.

29. Clause 29 of this national standard requires the *occupier* to provide access to and from and within the *premises* to the areas where *dangerous goods* are stored and *handled*.

30. SECURITY

In view of the *hazards* associated with the storage and *handling* of *dangerous goods*, access to *premises* and work areas must be restricted to those having a legitimate purpose.

30.1 When developing security systems and procedures, the *occupier* *should* consider:

(a) the need to ensure the security of personnel, product, processes, equipment, *plant*, buildings, documentation, information systems and any areas of special *risk*;

(b) the nature of the *hazards* and the levels of *risk*;

(c) the location of the *premises*, including the nature of the surrounding community and environment;

(d) the likelihood of mischief or sabotage;

(e) the integrity and reliability of the security system hardware and design; and

(f) what back-up support is required for security systems and personnel;

30.2 Where it is necessary to control access of all people to the *premises*, the access control system *should* include:

(a) the means to identify the extent of access to be permitted for each person;

(b) the means to account for everyone on site at any given time; and

(c) the issue of restricted access passes to visitors, or prohibiting unaccompanied access.

30.3 Depending on the size and *hazards* of the particular *premises*, examples of security measures might include:

(a) fencing or enclosing areas where the *dangerous goods* are kept;

(b) providing locks on doors, windows and other openings to buildings, rooms, compartments or *containers* in which *dangerous goods* are kept;

(c) continuously supervising areas where the *dangerous goods* are kept;

(d) performing security checks on all vehicles entering or leaving the *premises*; and

(e) limiting access by visitors, contractors and *employees* to authorised areas.
30.4 Employees should receive training to ensure that they understand security measures and security signs.

31. DECOMMISSIONING/ABANDONING/DISPOSAL

31.1 Prior to commencing the decommissioning, abandoning or disposal of plant used for dangerous goods, the occupier should identify the hazards, and assess and control the risks involved in the process.

31.2 Used dangerous goods containers, such as drums should be cleaned free of dangerous goods prior to disposal, unless they are:

 (a) intended to be refilled;

 (b) being sent for refurbishment; or

 (c) otherwise made safe by measures that will prevent adverse health effects to people and damage to property and the environment.

31.3 Used packagings, which have not been made free of dangerous goods, should retain labelling that properly identifies the residual hazard. When they are free of dangerous goods, the labelling must be removed.

31.4 Plant and equipment that have been made safe, but may present immediate or future residual or resultant hazards, need to be subject to precautions, including:

 (a) identification of possible residual or resultant hazards;

 (b) provision of appropriate fire protection, where required;

 (c) ventilation to prevent build up of a hazardous atmosphere; and

 (d) containment of any effluent.

31.5 Specified advice may be found in relevant parts of Australian Standards, for example AS 1940. Industry codes, for example the Australian Institute for Petroleum’s CP 22 The Removal and Disposal of Underground Petroleum Storage Tanks, specify alternative means to the above for making a dangerous goods storage and handling system safe for abandonment or disposal.

PROVISION OF INFORMATION (General)

32. DANGEROUS GOODS INFORMATION

32.1 The occupier should obtain relevant health and safety information for dangerous goods stored and handled on the premises that will allow health and safety procedures to be developed and adopted in order to:

 (a) ensure the safety and health of persons who may be affected by those goods;

 (b) enable them to take appropriate action in case of emergency arising from the storage and handling of those goods; and

People who may be affected by dangerous goods include:
- supervisors and employees
- visitors and contractors
- residents of the premises
- emergency personnel

There are corresponding obligations on the manufacturer or importer to provide suitable information under NS 10 & 11.
(c) prevent damage to property and the environment from the hazards arising from those goods.

32.2 Where an occupier develops and adopts a health and safety procedures in accordance with NS 32, the occupier is should communicate those procedures to the relevant persons. The occupier should ensure that the information provided is understood by all concerned, taking into account language and other communication difficulties.

32.3 The information may include:

(a) MSDS, or relevant information extracted from, or based on, MSDS;

(b) information included on labels, safety signs, placards, registers, manifests, and emergency procedure guides;

(c) extracts from chemical safety texts or proprietary databases;

(d) specific purpose guides prepared by industry groups; and/or.

(e) other guides relevant to the hazards associated with the particular dangerous goods.

32.4 Form of Information

Depending upon the situation, the information may best be provided:

(a) in writing, for example in the form of written procedures, signs or instructions;

(b) verbally, as in some forms of training;

(c) in electronic format; or

(d) as a combination of any of the above.

33. PLANT AND STRUCTURES USED FOR STORAGE AND HANDLING

33.1 Purpose of Information

NS 33 requires that information be provided about the plant and structures to anyone who has reason to operate, access, maintain, repair, inspect or test them. They should be provided with sufficient knowledge and understanding of the plant and structures and their associated hazards and risks to:

(a) enable them to perform their intended activity efficiently and safely; and

(b) guard against the plant and structures being in any way compromised or damaged.

33.2 Information to be provided

Information should be relevant to the activity to be performed by the person and commensurate with the extent of contact with the plant or structures. Relevant information may include:
(a) the purpose for which the relevant *plant* and structures are designed;
(b) testing or inspections to be carried out prior to, during, and on completion of, the intended activity;
(c) concise operating procedures and systems of work necessary for the safe use of the *plant*;
(d) warnings about particular *hazards*;
(e) details about installation, commissioning, testing, operation, maintenance, cleaning, transport, storage and/or dismantling, as appropriate;
(f) particular *hazards* associated with the structures, *plant* and their contents;
(g) site specific and external *risks* which may impact on the *plant* and structures; and
(h) emergency operating procedures.

33.3 Sources of Information

33.3.1 The primary source of information may be the information provided to the *occupier* by the supplier or installer in compliance with *NS 12*.

33.3.2 Additional information may be obtained from a variety of sources including designers, manufacturers, suppliers, statutory authorities, emergency service authorities, other users of similar systems, safety engineering consultants and relevant texts.

33.4 Form of Information

33.4.1 The *occupier should* ensure that the information provided is understood by all concerned, taking into account language and other communication difficulties.

33.4.2 Depending upon the situation, the information may best be provided:

(a) in writing, for example in the form of written procedures, safety signs or instructions;
(b) verbally, as in some forms of training;
(c) in electronic format; or
(d) as a combination of any of the above.

33.5 Use of Safety Signs

33.5.1 In addition to the placarding and labelling requirements of *NS 34–39*, safety signs *should* be used where the *risk* assessment process identifies a need to provide prominent instructions and/or warnings. Safety signs may be used to highlight or reinforce such matters as:

(a) the proximity of *hazards*;
(b) the nature of *hazards*;
(c) the control of *risk* factors;
(d) the protection of *risk* control mechanisms;

AS 1319 Safety Signs for the Occupational Environment provides numerous examples of safety signs which may be applicable. To ensure uniformity and assist recognition, where safety signs are of a type included in AS 1319, they *should* comply with that Standard.
(e) operating instructions and procedures;
(f) the location of emergency equipment and materials; and
(g) emergency instructions and procedures.

33.5.2 Table 3 gives examples of some common types of safety signs.

33.6 Identification of Dangerous Goods in an Enclosed System

33.6.1 Occupiers should ensure that any dangerous goods in an enclosed system such as any storage container, spill containment system, pipework, fittings or plant are clearly identified to anyone who may be affected.

33.6.2 Methods for identifying dangerous goods in enclosed systems include:

(a) special signs alerting people to specific hazards and responsibilities;
(b) other forms of marking that serve the purpose, such as colour coding on pipework; or
(c) schematic layouts displayed prominently.

Table 3. Examples of Common Types of Safety Signs

<table>
<thead>
<tr>
<th>Types of Signs</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory signs</td>
<td>WARNING – RESTRICTED AREA AUTHORISED PERSONNEL ONLY</td>
</tr>
<tr>
<td></td>
<td>SELF SERVE NOT PERMITTED</td>
</tr>
<tr>
<td>Hazard warning signs</td>
<td>FLAMMABLE GAS</td>
</tr>
<tr>
<td>Precautionary signs</td>
<td>HIGH PRESSURE OUTLET</td>
</tr>
<tr>
<td></td>
<td>NO SMOKING – STOP ENGINE</td>
</tr>
<tr>
<td></td>
<td>ATTACH EARTH CLIP BEFORE PUMPING</td>
</tr>
<tr>
<td>Emergency information signs</td>
<td>EMERGENCY STOP BUTTON</td>
</tr>
<tr>
<td></td>
<td>WATER DELUGE ANY SPILLS</td>
</tr>
</tbody>
</table>
PROVISION OF INFORMATION (Specific)

34. IDENTIFICATION

34.1 Labelling Requirements

34.1.1 Where an occupier refuses to accept any dangerous goods because they are unlabelled or if there is reason to suspect the dangerous goods are labelled incorrectly, the occupier should:

(a) arrange for the immediate removal of those goods from the premises back to the supplier; and

(b) identify the goods that are labelled incorrectly; and;

(c) ensure they are stored and handled in a safe manner until they are removed from the premises.

34.1.2 Where an occupier accepts any dangerous goods that are unlabelled or if there is reason to suspect the dangerous goods are labelled incorrectly, the occupier must label them in accordance with NS 9(4).

34.1.3 Where a dangerous goods label is defaced or damaged the occupier should ensure that the label is replaced.

34.1.4 Portable tanks and IBCs must be placarded with Emergency Information Panels carrying specified information.

34.2 Labelling Dangerous Goods Used in the Workplace

34.2.1 For dangerous goods used in the workplace, the occupier should ensure that those goods are also appropriately labelled in accordance with the National Code of Practice for the Labelling of Workplace Substances [NOHSC:2012(1994)].

34.2.2 The occupier has the responsibility to ensure that container labelling is accurate and not misleading.

34.2.3 Where labelling of a small container is not practicable, the occupier should ensure that the necessary health and safety information is provided in another effective manner. This could be achieved, for example, by attaching the information to the shelf on which the container is stored.

34.2.4 When the contents of the container have been consumed and the container is free from dangerous goods, the label that indicates the presence of dangerous goods should be obscured or removed.

In the context of the national standard, the primary purpose of labels on containers of dangerous goods is to provide clear warning of the hazards of the contents. Labelling is one area where the national standard is essentially prescriptive. Uniformity in the ways in which dangerous goods are labelled leads to increased recognition and improved safety.

NOHSC:2012(1994) recommends that labels on containers of hazardous substances, with a capacity greater than 500 g or 500 mL also include:

- Class label and Subsidiary Risk label, where the substance is a dangerous goods;
- Identification information eg (UN Number);
- Risk Phrase(s);
- Safety Phrase(s);
- first-aid procedures;
- emergency procedures;
- details of manufacturer or importer;
- expiry date (where relevant); and
- reference to MSDS.

It is expected that NOHSC:2012 will be extended and retitled to incorporate dangerous goods labelling.
34.2.5 Particular care should be taken with unlabelled containers with unknown contents. It is good practice to isolate such a container until its contents can be identified and it is appropriately labelled. If the contents cannot be identified by the occupier, expert assistance should be obtained. Containers should not be disposed of until the hazards are known, and then only in an acceptable manner, in consultation with the relevant waste management Authority.

35. IMMEDIATE USE CONTAINERS

35.1 NS 35 provides an exemption from the labelling of immediate use containers. To be considered for exemption under this clause, it would normally be expected that the complete task, including rendering the container free of dangerous goods, would be completed within a single shift.

35.2 Anyone who may have reason to handle the unlabelled container should have access to health and safety information from other sources such as the labelling of the original container and the MSDS.

This exemption from labelling should only be applied if every person who may have reason to handle the container will know with absolute certainty what the contents are or have been. Should the person using the container be unable to complete the task for any reason, the person completing the task must be in no doubt as to the contents

Examples:
- A bucket used to transfer dangerous goods from A to B and cleaned immediately after use could be exempt from labelling.
- Where the same bucket is regularly used for the purpose, labelling that clearly identifies the contents, as required by NS 33(b), would apply.
- Larger transfer vessels should also be labelled to comply with NS 33(b).

36. PLACARDS

36.1 Placards are required to provide visual warning of the hazards associated with the dangerous goods and/or combustible liquids at the premises and at each building or other facility where dangerous goods are stored or handled.

36.2 When calculating quantities for placarding, the guidance in CoP 36.2.1–4 should be taken into account.

36.2.1 All containers other than those that are free from dangerous goods should be included in the calculation.

36.2.2 All dangerous goods containers should be assumed to be full, even if they are not.

36.2.3 Some quantities of dangerous goods in packages may be expressed on labels as a volume (e.g. as litres or millilitres) and others as mass (e.g. grams or kilograms). When determining the aggregate, as is required for mixed Class storage, convert all volumes to litres and all mass measurements to kilograms. Then add the number of litres to the number of kilograms to arrive at the aggregate.

36.2.4 The quantity of gas is always based on the capacity of the cylinder, whether full or nominally empty. However, the labelling usually indicates the mass of gas they are intended to hold. To determine the volume of a gas cylinder, look for the stamp on the cylinder neck or foot ring.
36.2.5 Clause 36.3 of this national standard provides for an arrangement between the occuper and emergency service Authority to determine the placement of placard(s).

37. OUTER WARNING PLACARDS

37.1.1 Outer warning placards are required as soon as any one of the “Placarding Quantities” from Schedule 1, as referenced by NS 37(a)–(e), is exceeded.

37.1.2 Except where agreed with the emergency services under NS 36(3), outer warning placards are required at all entrances that the emergency services may need to access. This may include:

(a) the main entrance off the street;
(b) all other street entrances, including side and back streets; and
(c) if emergency access may be via a neighbouring property, at the entrance from that property.

• Depending on the quantities of dangerous goods on the premises, under some circumstances the outer warning placard may be the only dangerous goods placarding required.
• If the premises consists of a building set back from the street, placarding at the street entrance might be ineffective and/or impracticable. In such cases outer warning placards should be displayed at each entrance to the building which may be used by the emergency services.
• At large premises, such as a port facility, rail yard or large manufacturing facility, outer warning placards may be more effective if they are duplicated on the approaches to the particular buildings or areas where the dangerous goods are located.

38. PLACARDS FOR BULK

38.1 It should be noted that the minimum placarding quantities based on Schedule 1 do not apply to the placarding of bulk storage of dangerous goods. If it is bulk, it must be placarded. It is bulk if the dangerous goods container:

(a) has a capacity of 450 L or more;
(b) is holding 400 kg or more of dangerous goods; or,
(c) if containing Class 2, has a capacity of more than 500 L.

38.2 Placarding for bulk dangerous goods or combustible liquids should be located so that:

(a) where there are multiple bulk storages, there can be no confusion as to the application of the placard; and
(b) the placard would be immediately visible to emergency services personnel approaching the storage from the most likely direction.

• Placards for bulk storage of dangerous goods are essentially the same as the full-size Emergency Information Panel required by the ADG Code for bulk transport, with the emergency contact detail removed.
• Bulk containers placarded in accordance with the ADG Code meet the requirements of NS 38.
• Bulk containers must be placarded at all times unless they are free of dangerous goods.
39. **PLACARDS FOR PACKAGED DANGEROUS GOODS**

39.1—39.5 Clause 39.1 – 39.5 of this national standard provides the threshold levels for placading packaged dangerous goods.

- While labels are required to be grouped into one placard [NS 39(1)(b)], there is no particular requirement for them to be grouped vertically or horizontally.
- For those areas where there is regular variation in the types of dangerous goods, for example in areas where dangerous goods in transit are held, it may be more convenient to use magnetic labels, or frames with slip-in/slip-out labels that are commonly used on vehicles transporting dangerous goods.
- In locations where the public may have access to the placards, labels that attach more permanently will be required.
- Where there is some doubt as to whether to placard in particular circumstances, it is better to err on the side of safety. If, by following the rules in NS 39, a reasonable case can be made for applying a particular label, that label should be applied.

40. **MANIFEST AND SITE PLAN OF THE PREMISES**

40.1 **Provision of Manifest**

40.1.1 The principal purpose of the manifest is to provide the emergency services Authority with information about the quantity, type and location of dangerous goods stored and handled on a premises. This enables them to respond appropriately if called to an incident.

40.1.2 The dangerous goods manifest should be housed in a receptacle that is capable of holding the manifest, emergency plans, scale-drawings and any other relevant information. Its housing should be:

(a) of substantial weather-proof construction, if located outdoors; and

(b) located near the Outer Warning Placard at the front of the premises; or

(c) where this is not practicable, as at a shop, immediately inside the door.

Where, there is more than one external entry point that might be used by emergency services, for example at larger premises, the manifest should be located at the main entrance, except by agreement with the emergency services.

40.1.3 The dangerous goods manifest should be reviewed when there is a significant change in the type or quantity of dangerous goods or combustible liquids that are stored and handled on the premises. A significant change is one where a new hazard is introduced, there is a substantive change in the risk, or the emergency services may need to respond differently to an incident. Significant changes could include:

(a) the introduction or removal of a storage area;

(b) a substantial change in the quantity of dangerous goods in an area, for example ± 20%;

(c) any change in the Classes of dangerous goods stored;
(d) any change in the types of dangerous goods stored in bulk;

(e) the introduction of higher risk dangerous goods. –For example, if Packing Group I goods are introduced where there were previously only Packing Group II or III.

40.2 Manifest Content

The information to be contained in the manifest is prescribed in NS 40(2). A sample manifest is provided at Appendix 12.

40.3 Site Plan of the Premises

40.3.1 The site plan of the premises should be on a scale that adequately illustrates the details required by the national standard. The detailed information to be provided on the plan is prescribed in NS 40(3).

40.3.2 Where relevant, additional information may also be included, such as:

(a) the location of emergency plans;

(b) the location and uses of all buildings, amenities, structures and internal roadways on the premises;

(c) distances between dangerous goods operations and other facilities;

(d) the location of fire mains, hydrants, automatic sprinkler systems, hose reels, portable fire extinguishers and other protective devices;

(e) evacuation routes;

(f) the location and nature of any fences; and

(g) areas of public access adjacent to the site and parking (if any).

40.4 Dangerous Goods In Transit

40.4.1 The manifest at a transport depot should be kept up to date as far as practicable, as minimum once a day.

40.4.2 For dangerous goods in transit the running list of shipping documents can serve as the manifest.

- In a transport depot, the nature and quantities of dangerous goods can vary wildly throughout the day as freight containers, trucks and/or trains come and go.
- ADG Code shipping documents provide the most up to date information for the manifest about the dangerous goods in transit.
41. DANGEROUS OCCURRENCES

41.1 Investigation and Recording Systems

In order to minimise the likelihood and magnitude of further incidents, it is essential that all dangerous occurrences and near misses be investigated expeditiously, in an orderly manner and with rigour. At all premises, except those where only minor quantities of dangerous goods are stored and handled, this will necessitate a formal incident investigation and recording system. This system should:

(a) be prepared in consultation with employees and any employee representatives;

(b) establish guidelines for carrying out accident and incident investigation;

(c) ensure that properly trained investigation officers are expeditiously appointed to carry out investigations;

(d) provide sufficient Authority to the investigating officers to ensure the causes and corrective actions are fully identified;

(e) provide for implementing the recommendations arising from the investigation; and

(f) be documented so that it is readily understood by anyone who may be affected.

41.2 Investigating and Recording Dangerous Occurrences and Near Misses

41.2.1 The aim of the investigation is to prevent further incidents by:

(a) identifying all the immediate and underlying causes;

(b) formulating corrective action plans (short term and long term) to deal with the causes;

(c) assigning individual responsibility for, and reasonable time limits to complete, the corrective action plans; and

(d) monitoring the completion of the corrective action plans.
41.2.2 The following questions may assist in investigating and recording a near miss:

(a) Were the on-site or off-site emergency plans activated?

(b) Did the leak or spill have the potential to escalate into fire, explosion or release of toxic materials?

(c) Did the leak or spill have the potential to result in:
 - acute or chronic human health effects?
 - serious environmental harm?
 - damage to property?

(d) Would the leak or spill affect the quantity or quality of effluent discharged into sewers?

(e) Did the leak or spill need to be reported to the State or Territory Environment Protection Authority (under other legislation or a site leak or spill reporting plan)?

41.2.3 Managing Dangerous Occurrences and Near Misses

Dangerous occurrences and near misses should be managed in accordance with NS 41(d) and the emergency procedures and plans required by NS/CoP 27. This must be achieved in such a way that damage to life, health, property and the environment is minimised.

42. – 44. REPORTING Clause 42 – 44 of this national standard outline the requirements for reporting a dangerous occurrence or near miss.

No further explanation is considered necessary for the incident reporting requirements of the national standard.

43. – 46. NOTIFICATION Clause 45 – 46 of this national standard outline the requirements for notification.

The Authority is to be notified prior to the storage and handling at any premises of dangerous goods in quantities indicated in NS 45.
DUTIES OF PERSONS IN A WORKPLACE

Employers

47. CONSULTATION

<table>
<thead>
<tr>
<th>Techniques for organising consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective consultation depends on communication – that is, understanding the people being consulted and providing them with adequate information in a format appropriate to their needs, to enable them to have informed views. The process used for consultation should consider the needs of employees and employee representatives from a non-English speaking background. Guidance on techniques for consultation in multilingual workplaces is provided in the Code of Practice for Provision of Occupational Health and Safety Information in Languages other than English. The employer should also have regard to the literacy needs of the employees in the workplace.</td>
</tr>
<tr>
<td>Examples of consultation mechanisms may include direct discussion, toolbox meetings, quality circles, health and safety committee meetings or combinations of these. Other forms of consultation already existing in the workplace such as quality reports, hazard inspections or special working parties may also be useful.</td>
</tr>
</tbody>
</table>

47.1 NS 47, in relation to the storage and handling of dangerous goods in a workplace, requires the employer to consult with employees and any other people engaged to carry out work at the premises who are likely to be affected by the dangerous goods. Consultation should also take place with the employee representatives.

47.2 Consultation is required on:

(a) hazard identification;
(b) risk assessment;
(c) risk control; and
(d) any proposed changes likely to affect the employees’ health or safety arising from the dangerous goods.

47.3 Training programmes are to be developed, implemented, evaluated and revised in consultation with the target groups of employees and their employee representatives.

47.4 Consultation should take place as early as possible in planning the introduction of new or modified tasks or procedures associated with the storage and handling of dangerous goods to allow for changes arising from consultation to be incorporated. Consultative procedures should allow enough time for the employee representatives to consult with their designated work group employees and discuss the issue among them and with the employer.
48. INDUCTION, INFORMATION, TRAINING AND SUPERVISION

Under NS 48, the employer must provide appropriate induction, information, training and supervision to all people involved with the storage and handing of dangerous goods. Induction, information and training should provide employees with the skills and knowledge they need to perform their jobs safely. It should help them to understand:
- the hazards and risks associated with the storage and handling of dangerous goods;
- how to follow health and safety procedures;
- the reasons risk controls have been set in place and how to use them; and
- emergency plans.

It is important to remember, however, that while training can be effective, it is not a substitute for effective risk control measures.

48.1 Induction

Depending on the complexity of the operation, the employer should consider the use of a formal induction program. Such a system would seek to ensure that each person who may be involved with the storage and handling of dangerous goods achieves the appropriate knowledge and competencies and is effectively supervised until that occurs.

48.2 Training

48.2.1 Who should receive training?

The employer should provide training to employees and anyone else under their control who may be affected by dangerous goods, for example, contractors or consultants. In particular, training should be provided for all those who:

(a) purchase, distribute, operate, commission, test, inspect, assess damage to, maintain, repair, clean, alter and/or adjust dangerous goods, plant, equipment or personal protective and safety equipment, or manage or supervise other employees in these tasks; or

(b) work in areas where dangerous goods are stored and handled or where plant used with dangerous goods is being operated, commissioned, tested, inspected, maintained, repaired, altered and adjusted.

48.2.2 Content of Training for Employees

Training for employees should, to the extent necessary to enable them to perform their tasks safely in accordance with the national standard, include:

(a) the relevant provisions of the national standard and this national code of practice;

(b) the implementation of risk control measures determined in accordance with NS 15;

(c) a working knowledge of the dangerous goods and/or combustible liquids at the premises, including:
 - an understanding of the dangerous goods classification system;
 - types and quantities of dangerous goods and combustible liquids at the premises or in the work area;
- any peculiar hazards associated with those goods;
- how to read and understand the labels and MSDS for those goods; and
- where to obtain further health and safety information on those goods;

(d) issues relating to the operation, commissioning, testing, inspection, maintenance, repair, adjustment or alteration of plant and equipment, including:
- safe working methods and procedures;
- all associated hazards, whether mechanical, chemical or other;
- the working of all controls, including emergency controls;
- operating characteristics and indications of system failure;
- the purpose, operation and use of protection systems, including guards and safety procedures; and
- relevant manufacturer’s specifications and maintenance requirements;

(e) any specific controls which are required around dangerous goods installations, including:
- control of ignition sources; and
- access and movement controls for personnel, materials and equipment;

(f) personal protection issues including:
- the availability, selection, fitting and use of personal protective equipment;
- relevant hygiene issues; and
- the avoidance of all hazards on the premises; and

(g) emergency management issues including emergency plans and procedures.

48.2.3 Training Outcome

The required outcomes of training for employees includes their ability to demonstrate:

(a) safe work practices relating to the storage and handling of dangerous goods;

(b) a working knowledge of the hazards of the dangerous goods in the workplace; and

(c) knowledge of the provisions of the national standard as they relate to the storage and handling of dangerous goods in the workplace.

48.2.4 Review of Training

The employer should systematically review the training provided, identify the need for further training and provide such training whenever changes occur in the workplace which are likely to affect safety and health related to the storage and handling of dangerous goods. Such changes may include:

Training review should include the ongoing monitoring of work practices to ensure that safe practices are maintained.

CoP 47.3 discusses consultation on training.
(a) the introduction of new dangerous goods to the work area;
(b) the introduction of new plant or equipment;
(c) a change in operating procedures; and
(d) changes in the layout of the workplace, or to work practices or control measures.

Refresher training should be provided on a regular basis.

48.2.5 Records of Training

The national standard requires the employer to keep records of all training provided to employees. Training records should include:

(a) the names of the employees or other trainees;
(b) dates of attendance;
(c) the title and content of the training course;
(d) the duration of training; and
(e) the name of the training provider.

Limitations of training

Although training plays an important part in ensuring effective risk control, it is not part of the hierarchy of risk control. People who are likely to be affected by the dangerous goods at the premises should be aware of the nature of the risk and the role that specific control measures play in risk prevention. However, the employer should not rely on safe worker behaviour alone. High levels of training and instruction cannot substitute for effective and proper measures to control the risk.

48.3 Provision of Information

For more detail of the type of information to be provided by the employer, see CoP 32 and 33.

48.4 Supervision

The employer should only employ persons in any role with influence over how another, such as an employee or contractor, carries out any task associated with the storage and handling of dangerous goods, if the person has sufficient knowledge of the dangerous goods and task that instructions or advice given will always lead to safe outcomes.

49. Clause 49 of this national standard ensures that the risk assessment record is available to employees who are likely to be affected by the dangerous goods on the premises.
50. **VISITORS**

Where there is a perceived risk to the visitor, or where the presence of the visitor may constitute a risk, the occupier should ensure that before visitors are permitted to enter parts of the premises where dangerous goods are stored and handled, they are properly informed about:

(a) the hazards to which they may be exposed while on the premises;

(b) appropriate safety measures to be applied while on the premises; and

(c) what actions to take if any emergency procedure or plan is activated while they are on the premises.

50.1 The need for a formal system of providing safety information will depend on a number of factors including the:

(a) nature and severity of hazards on the premises;

(b) extent of the premises and the degree of access provided; and

(c) degree of supervision which will be provided.

50.2 Methods for supplying visitors with safety information, concerning those parts of the premises where dangerous goods are stored and handled, may include:

(a) strategically placed signs;

(b) giving instructions;

(c) providing a safety information card;

(d) showing a safety video; or

(e) other appropriate information.

51. **MATERIAL SAFETY DATA SHEETS**

51.1 Provision of MSDS

51.1.1 The employer may provide MSDS in a number of ways, including:

(a) paper copies;

(b) microfiche copies with reader; or

(c) computerised databases (local or on-line).

• The activities of visitors may lead to increased risk to themselves, employees, the storage and handling system and the dangerous goods being stored and handled. The employer can guard against this by providing appropriate information and supervision.

• Notwithstanding the provision of information, employers may consider keeping visitors under constant supervision, or at least observation while they are on the premises.

• A MSDS for dangerous goods should be obtained from the manufacturer or importer.
51.1.2 In each instance:

(a) *MSDS must* be readily available to persons in the *workplace* who may need them; and

(b) the means of obtaining a paper copy *should* be made available.

51.1.3 Where goods are manufactured and subsequently stored on the *premises*, the *employer* has the same obligation, as the manufacturer or supplier under NS 10, to produce *MSDS*.

51.2 Provision of Information:

- Retailers
- Dangerous Goods in Transit

51.2.1 A *retailer* is not required to obtain a *MSDS* from the supplier for *dangerous goods* that are in consumer *packages* intended for retail sale. However, this exemption does not apply if:

(a) it is intended that the *container* be opened on the *premises* (except for sampling or tinting paint); or

(b) the *dangerous goods* are provided for trade use via a wholesale or trade supply counter or section.

51.2.2 While *employers* are not required to have *MSDS* for *dangerous goods* in transit, they are required to have safety and health information concerning those *dangerous goods* accessible and available for their *employees* and any other person who may be affected by the *dangerous goods*.

51.2.3 Safety and health information required by NS 51(3) *should* enable people who may be affected by the *dangerous goods* and personnel of the emergency service *Authority* to:

(a) identify the *dangerous goods* on the *premises*;

(b) recognise the *risks* involved in loss of containment or uncontrolled reaction of the *dangerous goods*;

(c) respond appropriately in an emergency; and

(d) comply with relevant legislation.

51.2.4 Basic initial emergency response information may be found in a number of sources, including:

(a) Standards Australia SAA/SNZ HB76 *Dangerous Goods Initial Emergency Response Guide*;

(b) other emergency response guides;

(c) industry codes of practice;

(d) emergency procedures guides;

(e) *MSDS*; and
(f) computer data systems used by transport operators for the management of dangerous goods transport.

51.2.5 An employer is required to have MSDS available for dangerous goods that are stored and handled on the premises other than dangerous goods in transit or consumer packages intended for retail sale. MSDS are required for all dangerous goods used on the premises such as cleaning chemicals, fuels and protective coatings.

51.2.6 All employers must obtain and provide MSDS to an employee or employee representative when requested to do so.

52. REGISTER FOR DANGEROUS GOODS

52.1 Where the employer finds it convenient, the list of dangerous goods required by NS 52 for inclusion in the register may be identical to or in the same form as the manifest where one is required by NS 40.

52.2 Clause 52(2) exempts dangerous goods in packages of a size below the marking levels of the ADG Code.

52.3 Dangerous Goods in Transit

While under NS 52(3), the employer is exempt from providing a list of dangerous goods and MSDS for dangerous goods that are in transit, there are remaining requirements to:

(a) provide relevant safety and health information (as detailed in CoP 51.3); and

(b) keep a register for all other dangerous goods that are stored and handled on the premises, including consumer items for use on the premises.

53. Clause 53 of the national standard specifies the duties of Employees.

54. Clause 54 of the national standard specifies the duties of All Persons
DUTIES OF OWNERS OF PIPELINES

55. GENERAL

55.1 **NS 55(1)** effectively applies the control of risk requirements that apply to occupiers in **NS 15(4)(a)** & (b) to the owners of pipelines.

55.2 **NS 55(2)** applies the control of risk requirements that apply to occupiers in **NS 15(4)(c)** to the operators of pipelines.

55.3 To ensure that pipelines are located and operated in the safest practicable manner, owners and operators of pipelines are strongly advised to apply all other relevant clauses of the national standard which apply to the occupier, including, but not limited to clauses:

- **NS 13.** Hazard Identification;
- **NS 14.** Risk Assessment;
- **NS 15.** Control of Risk;
- **NS 16.** Separation by Physical Means;
- **NS 18.** Stability of Dangerous Goods;
- **NS 20.** Spills and Containment;
- **NS 21.** Impact Protection;
- **NS 22.** Transfer of Dangerous Goods;
- **NS 23.** Fire Protection;
- **NS 24.** Emergency Preparedness;
- **NS 25.** Ignition Sources in Hazardous Areas;
- **NS 26.** Safety Equipment;
- **NS 30.** Security;
- **NS 31.** Decommissioning/Abandoning/Disposal;
- **NS 41.** Dangerous Occurrences.

55.4 Identification of Pipelines

55.4.1 Pipelines used for the conveyance of dangerous goods should be identified. Suitable systems for identification may be found in:

(a) **AS 1345 Rules for the Identification of Piping, Conduits, and Ducts**;

(b) Australian Institute of Petroleum’s CPS **Code of Practice for Pipeline and Underground Tank Identification**; or

(c) other relevant codes of practice.

56. Clause 56 of this national standard specifies the notification requirements for the owner of a pipeline.

57. Clause 57 of this national standard specifies the requirement for the Authority to acknowledge a notification from the owner of a pipeline.
APPENDIX 1 - MINOR QUANTITIES

INTRODUCTION
This appendix provides information and guidance for the storage and handling of dangerous goods in minor quantities. However, the occupier of premises where minor quantities of dangerous goods are stored and handled can elect to control the risks associated with those goods using the provisions of Appendix 1 of this national code of practice or apply the risk management provisions of the national standard in conjunction with the requirements of the relevant Australian Standard for the dangerous goods on the premises.

1 WHAT ARE MINOR QUANTITIES?
In the national dangerous goods framework, minor quantities of dangerous goods are aggregate quantities less than those listed in Schedule 1 of the national standard.

Minor quantities of dangerous goods, at a premises, are storage and handling areas at which the national standard does not require placards to be displayed. –See NS/CoP 37–39 and Schedule 1 to the national standard.

2 RELATIONSHIP WITH OTHER PARTS OF THIS CODE
This Appendix is limited to the duties an occupier has in regard the Hazard Identification, Risk Assessment and Risk Control and a limited number other duties for occupiers. Where an occupier has an additional duty under the national standard which is not specified in this Appendix, (eg where the occupier is also an importer or manufacturer and is required to prepare and provide MSDS) the occupier should refer to the body of the Code for guidance.

The provisions of this Appendix do not apply to storage and handling areas at premises that are required to be placarded under the national standard.

DUTIES OF OCCUPIER

3 HAZARD IDENTIFICATION
3.1 For minor quantities, it is sufficient compliance with the hazard identification requirements of NS 13, for the occupier to prepare a list of all the dangerous goods in each minor storage, that includes:

(a) the name of each of the dangerous goods;
(b) the Class, plus any subsidiary risk and Packing Group of each of the dangerous goods; and
(c) a summary of the hazard(s) identified in the MSDS prepared by the manufacturer or importer for each of the dangerous goods.

3.2 The material safety data sheet (MSDS) must be obtained for each of the dangerous goods at the premises. The MSDS provides the hazard information on the dangerous goods.

4 RISK ASSESSMENT
4.1 For each minor quantity, it is sufficient compliance with the risk assessment requirements of the NS 14 for the occupier to:
(a) review the MSDS for each of the dangerous goods kept in the area; and
(b) document the broad types of risk associated with the storage and handling of the dangerous goods in that area.

4.2 For the purposes of clause 4.1(b) above, the broad types of risk to be documented would include:
(a) fire and explosion risks associated with the storage and handling of fire risk dangerous goods or combustible liquids;
(b) toxic risks associated with dangerous goods of Class or Subsidiary Risk 6.1; and
(c) corrosive risks associated with dangerous goods of Class or Subsidiary Risk 8.

4.3 In documenting the risks, the occupier should specify how the risk may arise during the storage and handling of the dangerous goods (for example the risk assessment may identify the corrosive risk to eyes and skin during decanting of sulfuric acid).

5 RISK CONTROL

5.1 Principles of Risk Control

For minor quantities of dangerous goods, it is sufficient compliance with risk control requirements of the national standard for the occupier to apply the control measures specified in Section 5.2 to 5.20 of this Appendix to each minor quantity on the premises.

5.2 Minimise Quantities Kept

Before determining the measures that may be required to control the risks from the storage and handling of dangerous goods the occupier should:
(a) evaluate whether the dangerous goods being stored and handled are necessary and cannot be replaced by other goods; and
(b) where practicable, ensure the quantity of dangerous goods is kept to a minimum consistent with the operation of the premises.

5.3 MSDS Instructions

Where the MSDS for dangerous goods specifies measures and/or equipment to be used for the storage and handling of the dangerous goods, the occupier should adopt those measures and/or use that equipment for the storage and handling of those dangerous goods.

5.4 Storage and Handling Equipment

The occupier must ensure that all plant and equipment for use in the storage and handling of dangerous goods is suitable for the purpose.

5.5 Packages for Dangerous Goods

5.5.1 Containers for dangerous goods must comply with the ADG Code except as provided for in 5.5.2 below.

5.5.2 Dangerous goods may be transferred, for storage and subsequent use at the premises, into a container that does not comply with the ADG Code, provided the container is suitable for the intended purpose and safe to use with those dangerous goods. The goods should not react with the container or in any other way reduce the integrity of the container (e.g. softening or embrittlement of plastics).
5.5.3 Containers of dangerous goods must be marked in accordance with the ADG Code.

5.6 Storage and Handling of Packages

5.6.1 Packages of dangerous goods should be:
(a) kept securely closed when not in use;
(b) stored and handled in a manner that will prevent damage or spillage from them and minimise the risk of them falling or being dislodged; and
(c) stored on surfaces that are resistant to attack by their contents if spilt and with which they will not react dangerously if spilt.

5.6.2 Packages of dangerous goods should be stored so that leakage from packages cannot adversely affect other dangerous goods in the storage area. Packages of liquid dangerous goods should not be stored above solid dangerous goods in paper or absorbent packaging. Glass containers of liquids should be stored at lower levels.

5.6.3 Where dangerous goods require special storage conditions to ensure their stability (i.e. to eliminate the risk of hazardous reaction), regular checks should be made to ensure that these special conditions are maintained. Examples of special storage conditions are the presence of wetting agents, diluents or phlegmatisers, or the need to keep refrigerated.

5.6.4 Where significant quantities of aerosols are stored together in outer packaging, the aerosol storage should be enclosed in a strong mesh enclosure to reduce the risk from projectiles in the event of a fire involving the aerosols. For the sake of this clause, an aggregate of 100L or more would be a significant quantity of aerosols.

5.7 Transfer of Dangerous Goods

5.7.1 This clause 5.7 applies where dangerous goods need to be transferred (by pumping, decanting, dispensing and filling) into or from a container or to be moved from place to place in a minor storage area.

5.7.2 Spill containment should be provided that can hold at least the quantity of the largest container. Any decontamination materials or clean-up equipment should be kept close by.

5.7.3 Where there is a likelihood of static electricity being generated and risk from ignition of flammable vapours during the transfer, both the container being filled and any transfer equipment should be earthed.

5.7.4 The transfer should be done in a manner that reduces the generation of any vapours and avoids splashing or spillage of the dangerous goods.

5.7.5 Containers holding dangerous goods should be closed or securely covered to avoid splashing or spillage when being moved.

5.7.6 The place where the transfer into or out of containers is carried out should be set aside for that purpose and not be within the storage area. The transfer area should be free of obstructions and have sufficient space for the operation, and to hold containers and associated equipment.

5.8 Segregation from Incompatibles, Foodstuffs and Other Occupancies

5.8.1 Any dangerous goods that are incompatible (i.e. would react dangerously if mixed) should be segregated to prevent them mixing. This segregation may be achieved by use of an impervious barrier or by a separation distance sufficient to prevent
contamination. Where a separation distance is used, a distance of 1.5 metres should be sufficient in most cases.

5.8.2 The ADG Code (Section 9.1.3) provides information on the compatibility of dangerous goods. A chart providing guidance using this information is at Appendix 15. Examples of dangerous goods which are incompatible and which should be segregated are:

(a) Class 5.1 oxidising agents with Class 3 flammable liquids, combustible liquids and/or Class 4.1 flammable solids (fire and explosion hazard);
(b) concentrated strong acids with concentrated strong alkalis (reaction hazard);
(c) cyanides and acids (generation of toxic gas hazard); and
(d) calcium hypochlorite and isocyanurate pool chlorine products (reaction and fire hazard).

5.8.3 Dangerous goods should be stored so that they cannot cause contamination of foodstuffs or personal hygiene products where a risk to health will result from contamination of these products. This segregation may be achieved by use of an impervious barrier or by a separation distance sufficient to prevent contamination. Where a separation distance is used, a distance of 1.5 metres should be sufficient in most cases. Dangerous goods should not be stored above foodstuffs or personal hygiene products where a risk to health will result from contamination of these products.

5.8.4 Minor quantities should be sufficiently separated from protected works, on-site facilities and property boundaries that a dangerous occurrence (e.g. a fire, explosion, violent reaction or release of toxic or corrosive substances) in the minor quantity will not cause harm or damage to people or property in those areas. This separation may be provided by distance or an impervious barrier.

The required level of separation will depend on the type and quantity of dangerous goods, how they are being stored and handled and the nature of the adjoining exposures (people and/or property).

Where a separation distance is used, 3 metres should be sufficient in most cases.

Where an impervious barrier is being used to provide the required separation, the barrier should be constructed of material that is fire resistant and structurally able to withstand a short duration fire (30–60 minutes)

5.9 Avoid Sources of Heat and Ignition

5.9.1 Dangerous goods should be stored away from sources of heat (e.g. heating appliances).

5.9.2 Fire risk dangerous goods (Class or Subsidiary Risk of 2.1, 3, 4.1, 4.2, 4.3, 5.1 or 5.2) and combustible liquids should be stored and handled away from sources of ignition (e.g. welding, grinding, flames).

5.9.3 Where flammable or explosive atmospheres can be generated by dangerous goods being stored or handled, any electrical equipment within the hazardous areas should be of a type suitable for hazardous area (for example flameproof or intrinsically safe). –see CoP 25.
5.10 Lighting

Lighting of areas where dangerous goods are stored and handled should be sufficient to allow normal work to be undertaken safely.

5.11 Security

Storage areas for dangerous goods should be secured against unauthorised entry.

5.12 Ventilation

5.12.1 The place in which dangerous goods are stored and handled should be provided with natural or mechanical ventilation sufficient to prevent the generation of a flammable or harmful atmosphere.

5.12.2 The level and type of ventilation will depend on the nature of the goods and whether they are being stored or used. Ventilation is not required where the documented assessment of the risks indicates that the likelihood of the release of flammable or harmful dangerous goods into the atmosphere in the storage area is negligible.

5.12.3 Where ventilation is required, natural ventilation should be by a minimum of two vents, preferably providing cross-flow ventilation, each having a free area of at least 0.2 m². Mechanical ventilation should be provided where natural ventilation is determined to be inadequate.

5.13 Spillage Control and Clean-up

5.13.1 Spillage containment would not normally be required for minor quantities unless the quantity of dangerous goods which could spill on any one occasion is such that dangerous goods could flow to other parts of the premises or beyond the premises.

Where there is a risk arising from the potential flow of dangerous goods to other parts of the premises which could create a risk, or if they could flow beyond the premises, the flow should be prevented from reaching any protected works, watercourse or the property boundary by such means as kerbing, bunding, provision of channels or utilising the slope of the land. Any spillage containment provided should have a capacity sufficient to contain the maximum foreseeable size of dangerous goods spillage in the area.

5.13.2 Suitable and sufficient equipment and materials should be kept at the premises for absorbing, neutralising or decontaminating and cleaning up spills from the largest packages of each type of dangerous goods present.

5.13.3 Any spills and leaks should be cleaned up immediately. Contaminated, spilled or leaked goods should not be returned to its original packaging except for the purposes of disposal or where it is known that this will not increase the risk.

5.13.4 Waste generated after the clean up of a spill or leak should be disposed of safely.

5.14 Personal Protection Equipment and Clothing

5.14.1 Personal protection equipment and clothing, suitable for the goods being handled, should be used or worn as appropriate when people are handling dangerous goods.

5.14.2 The occupier should ensure personal protection equipment and clothing provided is periodically checked and maintained in sound operating condition.
5.15 Clear Escape

Dangerous goods should not be stored or handled where they could hinder escape from the building or area in the event of a fire, spill or leak.

5.16 Fire Prevention

Areas in which dangerous goods are stored or handled should be kept clear of combustible matter and refuse. In the case of storage or work outdoors, the ground around the area should be cleared of combustible vegetation for a distance of at least 3 metres.

5.17 Fire Protection

5.17.1 A supply of water should be available, at a nearby location, for personal hygiene and emergency use.

5.17.2 In addition to the building fire protection installations, portable fire extinguishers appropriate to the type and quantity of dangerous goods being stored and handled, should be located at or near to the place where the dangerous goods are stored or handled.

5.17.3 All fire protection equipment should be maintained in an operable condition.

5.18 Emergency Procedures

5.18.1 The occupier should ensure that suitable emergency procedures are established for responding to all foreseeable emergencies taking account of:

(a) the nature and quantity of dangerous goods;

(b) the types and likelihood of emergencies;

(c) the fire protection and other emergency equipment provided;

(d) the physical features of the site;

(e) access to the premises; and

(f) the number of persons on the premises and adjoining premises.

5.18.2 The occupier should ensure that current emergency contact telephone numbers are displayed in a prominent location at the premises (including those of the fire Authority, hospital, ambulance and any other assistance identified in the emergency procedures).

5.19 Decommissioning

The occupier should ensure that any container or piece of equipment that has been used to store handle dangerous goods, and which is no longer required for that purpose, is cleaned free of dangerous goods or otherwise made safe.

5.20 Consultation, Information and Training

The requirements of NS 47 and 48, for consultation, induction, information, training and supervision, apply to minor quantities.
APPENDIX 2 RETAIL PREMISES

1 APPLICATION

1.1 This Appendix provides guidance for retailers. It applies only to those premises where dangerous goods are sold by retail to the general public. It applies to dangerous goods in consumer packages that are:
(a) on display for retail sale; or
(b) are kept in transitory storage after they are unloaded from transport vehicles and before they are displayed for sale.

1.2 This Appendix does not apply to dangerous goods that are:
(a) stored and handled at retail premises in bulk containers; or
(b) being intentionally warehoused at the retail premises for distribution to other retail outlets or workplaces.

2 RELATIONSHIP WITH OTHER PARTS OF THIS CODE

The occupier of retail premises to which this Appendix applies may choose to comply with the National Standard by following the guidance in Clauses 3–11 below.

3 HAZARD IDENTIFICATION

For retail premises to which this Appendix applies, it is sufficient compliance with the hazard identification requirements of NS 13, for the occupier to prepare a list of all the dangerous goods at the premises, that includes:
(a) the product name of each of the dangerous goods; and
(b) the Class, plus any subsidiary risk and Packing Group of each of the dangerous goods.

4 RISK ASSESSMENT

4.1 At retail premises to which this Appendix applies, it is sufficient compliance with the risk assessment requirements of the NS 14, for the occupier to document the broad types of risks associated with the storage and handling of dangerous goods at the premises.

4.2 For the purposes of clause 4.1 above, the broad types of risk to be documented would include:
(a) fire and explosion risks associated with the storage and handling of fire risk dangerous goods or combustible liquids;
(b) toxic risks associated with dangerous goods of Class or Subsidiary Risk 6.1; and
(c) corrosive risks associated with dangerous goods of Class or Subsidiary Risk 8.

4.3 In documenting the risks, the occupier should describe briefly how the risk might arise during the storage and handling of the dangerous goods (for example, the risk assessment may identify a fire risk from spilled methylated spirits if ignition occurs after a 1 litre bottle falls from a shelf).
5 RISK CONTROL FOR DANGEROUS GOODS ON DISPLAY

5.1 For an occupier of premises to which this Appendix applies, it is sufficient compliance with the risk control requirements of NS 15, with respect to dangerous goods stored and handled in display areas, to apply the control measures specified below in Sections 5.2–5.10 of this Appendix.

5.2 Prevention of Contamination

5.2.1 Dangerous good must be separated from other retail goods that may be contaminated in the event of leakage.

5.2.2 Dangerous goods should not be stacked above food, products for human consumption or hygiene products that may cause a risk to health if they become contaminated.

5.2.3 Dangerous goods should be separated from food or personal products so that accidental spillage or leakage does not result in contamination. This may be achieved by the use of an impervious barrier or by a separation distance sufficient to prevent contamination. Where a separation distance is used, a distance of 1.5 metres should be sufficient in most circumstances.

5.3 Segregation and Separation

5.3.1 Dangerous goods should be kept away from products that are incompatible with the dangerous goods.

5.3.2 The risk assessment should identify compatibility problems between products that are offered for sale at the same premises and segregation rules established to ensure incidents do not occur. Separation may be achieved by the use of an impervious barrier or by a separation distance sufficient to prevent the goods coming into contact with one another under all circumstances of storage and handling. Where a separation distance is used, a distance of 1.5 metres should be sufficient in most circumstances.

5.3.3 The ADG Code (Section 9.1.3) provides information on the compatibility of dangerous goods. A chart providing guidance using this information is at Appendix 15.

5.3.4 Swimming pools chlorine (calcium hypochlorite) should be stored away from any oils, flammable and combustible liquid. In addition, isocyanurate pool chlorine and hypochlorite pool chemicals can react violently together and must be separated.

5.4 Quantity Minimisation

The quantity of dangerous goods on display should be kept to a minimum consistent with the orderly and safe operations of the premises.

5.5 Package Storage and Handling

5.5.1 Packages should be displayed in a manner that will minimise the risk of packages falling or being dislodged or damaged.

5.5.2 Packages of liquid dangerous goods should not be stored above solid dangerous goods that are in paper or absorbent packaging, to avoid contamination in the event of spillage.

5.5.3 Packages of dangerous goods should not be opened on the premises except for tinting of paint for immediate sale or taking samples.
5.6 Spillage Control

5.6.1 Spillage containment would not normally be required in a retail display area unless the quantity of dangerous goods that may spill on any one occasion may lead to dangerous goods flowing to other parts of the premises or to outside the premises where they may create a risk.

5.6.2 Catchment for firefighting effluent is not required.

5.6.3 Equipment and sufficient quantities of materials should be kept at the premises for absorbing, neutralising or decontaminating and cleaning up spills from the largest packages of each type of dangerous goods present.

5.6.4 Any spillage of dangerous goods must be cleaned up promptly and in a safe manner.

5.7 Ignition Sources

Ignition sources should be kept away from the areas where flammable or combustible dangerous goods are kept. Naked flames from direct fired heaters and any flames associated with maintenance work should be kept at least 5 metres from the dangerous goods.

5.8 Fire Protection

In addition to any fire protection measures provided for the premises as a retail outlet, additional fire extinguishers of a type suitable for use with the dangerous goods may be required. Advice should be sought from the emergency services.

6 RISK CONTROL FOR DANGEROUS GOODS NOT ON DISPLAY

6.1 Where dangerous goods are kept at retail premises in storage areas outside the display area and the total quantity of dangerous goods are such that the premises are not required to be placarded, the guidance in Clause 5 of this Appendix may be applied to all storage areas.

6.2 Where:

(a) the total quantity of dangerous goods at the retail premises is such that an outer warning placard is required by NS 37; but

(b) neither the retail display area nor any transitory storage area are required to be placarded individually;

it is sufficient compliance with the risk control requirements of the national standard for the occupier to apply the minor quantity control measures specified in Section 5 of Appendix 1 to the transitory storage.

6.3 Where the quantity of dangerous goods in storage areas outside the display area is such that placarding is required by NS 37–39, the guidance in the body of this Code that is appropriate for the particular size of the storage area should be followed.

6.4 Customer Supplied Containers

If dangerous goods are filled into containers provided by the customer (eg. mineral turpentine, kerosene or LP Gas), the occupier should ensure that all aspects of the filling operation comply with:

(a) AS 1940 The Storage of Handling of Flammable and Combustible liquids where the dangerous goods are flammable or combustible liquids; or
7 DANGEROUS OCCURENCES AND EMERGENCY MANAGEMENT

7.1 The occupier of a retail premises must establish a system for investigating every dangerous occurrence that occurs at the premises. This system should provide for:

(a) procedures for staff to report dangerous occurrences;
(b) means of recording each dangerous occurrence that occurs;
(c) the allocation of responsibility for investigation of dangerous occurrences to a responsible person;
(d) investigations to be carried out to determine the cause of dangerous occurrences;
(e) the recording of details of the investigations are recorded, with records kept for 5 years; and
(f) the instigation and follow up of action to address the causes of dangerous occurrences to prevent a recurrence.

7.2 If a dangerous occurrence does occur at a retail premises, the occupier must take prompt action to control the dangerous occurrence under the dangerous occurrence requirements of NS 41.

7.3 The occupier must inform the Authority and emergency services authorities of the dangerous occurrence.

7.4 The occupier must within 14 days send a written report to the Authority.

8 MSDS

8.1 The retailer is not required to obtain a MSDS in relation to dangerous goods that are in consumer packages stored and handled at the premises that are intended for retail sale.

8.2 The retailer is, however, required to have readily accessible alternative information relevant to the health and safety aspects for the dangerous goods. The alternative information may be in the form of generic MSDSs, health and safety information from the literature or health and safety information provided by the manufacturer, importer or supplier of the dangerous goods.

8.3 If the dangerous goods are to be used on the premises or the consumer packages are opened for any reason, other than tinting of paint, the current manufacturer’s or importer’s MSDS must be obtained for the dangerous goods.

9 CONSULTATION, INFORMATION AND TRAINING

9.1 The occupier should advise employees of the hazards and risks associated with dangerous goods in consumer packages.

9.2 The occupier should ensure that access to appropriate information regarding the risks of the dangerous goods on the premises is readily available to the employees.
9.3 Methods for providing information to visitors on retail premises (this includes customers) may be achieved by:

(a) Strategically placed signs; or
(b) Giving verbal instructions.

10 PLACARDING OF RETAIL PREMISES

10.1 A retail premises must be placarded where the quantity of all consumer packages that are dangerous goods at the premises exceeds the placarding quantity listed in Schedule 1 of the national standard.

10.2 Clauses NS 36 – 39 specify quantities of dangerous goods that must be placarded. The placards that may be required include Outer Warning Placards NS 37, Placards for dangerous goods in bulk NS 38 and Placards for packaged dangerous goods NS 39.

10.3 At premises where placards are required, the occupier should ensure principle entrances to the premises are placarded in accordance with NS 39(5) of the national standard.

11 KEEPING LARGER QUANTITIES OF DANGEROUS GOODS

Where the quantity of all dangerous goods stored and handled on a retail premises are greater than the Manifest Quantities in Schedule 1 of the national standard, the occupier is required by the national standard to:

(a) prepare a written emergency plan (in accordance with NS 24);
(b) prepare a manifest for the premises (in accordance with NS 40); and
(b) provide a notification to the Authority (in accordance with NS 45).
This Appendix lists publications and technical standards and codes that are incorporated in this Code to provide additional guidance on compliance with particular duties under the national standard.

What is the effect of incorporating documents in a code of practice?

Incorporation of a published technical standard or code in a code of practice has the effect of making that document form part of the code. The standards and codes listed in this Appendix provide guidance to manufacturers, importers and suppliers of dangerous goods, and to occupiers on how to comply with their duties under the national standard.

It is important to note that the standards and codes in this Appendix have not been written specifically as guidance on how to comply with the duties under the national standard. As such, following the provisions of an incorporated standard or code may not constitute full compliance with the relevant duties. This is because the standard or code may not in itself deal with all the matters relevant to hazard identification, risk assessment and risk control for the dangerous goods in question. Appropriate judgement needs to be exercised in such circumstances.

To the extent that provisions of an incorporated standard or code are relevant to a duty under the national standard, following those provisions (as is the case with any provision of this code) may be considered to be compliance with the relevant duty under the national standard. However, as with other provisions of this code, provisions of an incorporated standard or code are not mandatory –alternative measures may be used in order to comply with the duties under the national standard.

It *should* be noted that many of the published standards and codes listed in this Appendix contain provisions expressed in a mandatory manner, that is, they state that a person "shall" do some action. The mandatory provisions in those documents are not considered to be mandatory for the purpose of this code. Appropriate judgement needs to be exercised in such circumstances and the national standard *should* be consulted to determine the mandatory requirements in those jurisdictions which have given effect to its provisions.
List of Incorporated Documents

STANDARDS AND CODES APPLICABLE TO ALL CLASSES OF DANGEROUS GOODS

Australian Code for the Transport of Dangerous Goods by Road and Rail (ADG Code), Federal Office of Road Safety, Canberra

AS 2243 Safety in laboratories

AS 2430 Classification of hazardous areas

AS 3833 The storage and handling of mixed *Classes of dangerous goods* in packages and intermediate bulk containers

AS/NZS HB76 *Dangerous goods Initial Emergency Response Guide*

AS/NZS 4360 Risk management

AS 1020 The control of undesirable static electricity

AS 1319 Safety signs for the occupational environment

STANDARDS AND CODES SPECIFIC TO ONE PARTICULAR CLASS OF DANGEROUS GOODS OR TO SPECIFIC TYPES OF DANGEROUS GOODS WITHIN A CLASS

Class 1 Explosives

Australian Code for the Transport of Explosives by Road and Rail (Australian Explosives Code), Department of Transport and Regional Services, Canberra

AS 2197 Explosives –storage, handling and use

Class 2 Gases

AG 501 Australian Gas Association Industrial and Commercial Gas Fired Appliances Code of Practice AG 501

AG 504 Australian Gas Association Code of Practice for Natural Gas Vehicle Refuelling Stations AG 504

AG 601 Australian Gas Association Gas Installation Code of Practice AG 601

AS 1596 The Storage and Handling of LP Gas

AS 1894 Code of practice for the safe handling of cryogenic fluids

AS 2022 SAA anhydrous ammonia code

AS 2030 Cylinders for compressed gases

AS 2090 Uninsulated road tank vehicles for compressed liquefiable gases

AS 2337 Gas cylinder test stations

AS 2927 The storage and handling of liquefied chlorine gas

AS 3961 Liquefied natural gas - storage and handling

AS 4332 Storage and handling of gases in cylinders

AS 4289 Oxygen and acetylene reticulation systems

Class 3 Flammable and combustible liquids

AS 1692 Tanks for flammable and combustible liquids

AS 1940 The storage and handling of flammable and combustible liquids
AS 2106 Methods for the determination of the flashpoint of flammable liquids (closed cup)
AIP CP4 Design, installation and operation of underground petroleum storage systems (UPSS)
AIP CP22 The removal and disposal of underground petroleum storage tanks

Class 4 Flammable solids; substances liable to spontaneous combustion; substances that in contact with water emit flammable gases
None Identified

Class 5 Oxidising agents and organic peroxides
AS 2714 The storage and handling of hazardous chemical materials - Class 5.2 substances (organic peroxides)
AS 4326 The storage and handling of oxidising agents

Class 6 Toxic substances
AS/NZS 4452 The storage and handling of toxic substances
AS 4081 The storage, handling and transport of liquid and liquefied polyfunctional isocyanates

Class 8 Corrosive substances
AS 3780 The storage and handling of corrosive substances

Class 9 Miscellaneous dangerous goods
None Identified

STANDARDS AND CODES APPLICABLE TO AN INDUSTRY OR PARTICULAR SITUATION
AS 2507 The storage and handling of pesticides
AS 3846 The handling and transport of dangerous cargoes in port areas

STANDARDS AND CODES APPLICABLE TO PARTICULAR DESIGN REQUIREMENTS
AS CB 18 SAA pressure piping code
AS 2809 Road tank vehicles for dangerous goods
AS 2865 Safe working in a confined space
AS 3000 SAA wiring rules
AS 3873 Pressure equipment –operation and maintenance
‘BCA’ Building Code of Australia

STANDARDS AND CODES APPLICABLE TO PIPELINES
AS 1345 Identification of contents of piping, conduits and ducts
AIP CP5 Pipeline and underground tank identification
FIRE PROTECTION STANDARDS AND CODES

General

- AS 1221 Fire hose reels
- AS 1603.5 Manual alarm call points
- AS 1670 Automatic fire alarm installations
- AS 2118 Automatic sprinkler installations
- AS 2419 Fire hydrant installations
- AS 2441 Fire hose reel installations
- AS 2941 Pumpsets
- NFPA 11 Low expansion foam
- NFPA 11A Medium and high expansion foam
- NFPA 11C Mobile foam apparatus
- NFPA 17 Dry chemical extinguishing systems
- NFPA 12 Carbon dioxide extinguishing systems

Fire Extinguishers

- AS 1841.1 General requirements
- AS 1841.2 Water type
- AS 1841.3 Wet chemical extinguishers
- AS 1841.4 Foam type
- AS 1841.5 Powder type
- AS 1841.6 Carbon dioxide type
- AS 1841.7 Vaporising liquids
- AS 4265 Wheeled fire extinguishers
- AS 2444 Selection and location
- AS 1850 Classification of extinguisher
- AS 1851.1 Maintenance

1 Wet Chemical Extinguishers covered by AS 1841.3 are designed for fires involving cooking oils and fats, many of which are combustible liquids.
APPENDIX 4 – A SYSTEM FOR RANKING RISKS

Quantifying Severity of the Outcome - S

<table>
<thead>
<tr>
<th>S</th>
<th>Extent of Consequences</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minor</td>
<td>Minor loss of containment. Dealt with by site personnel. No harm to personnel. No environmental damage.</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>Loss of containment. Minor fire. No structural damage. No harm to personnel. No long term environmental damage.</td>
</tr>
<tr>
<td>3</td>
<td>Major</td>
<td>Major loss of containment. Fire. Some structural damage. Minor injuries or personnel affected by fumes. Some environmental damage.</td>
</tr>
<tr>
<td>4</td>
<td>Catastrophic</td>
<td>Total loss of containment. Major fire. Major structural damage. Injuries/harm to personnel requiring hospitalisation >24 hours. Death. Impact largely confined to the premises.</td>
</tr>
<tr>
<td>5</td>
<td>Catastrophic external</td>
<td>Significant impact beyond the boundaries of the premises.</td>
</tr>
</tbody>
</table>

Quantifying Likelihood of Incident - L

<table>
<thead>
<tr>
<th>L</th>
<th>Likelihood of Occurrence</th>
<th>Indicative Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Totally eliminated</td>
<td>Zero</td>
</tr>
<tr>
<td>1</td>
<td>Rare</td>
<td>Once in a thousand years</td>
</tr>
<tr>
<td>2</td>
<td>Unlikely</td>
<td>Once in a hundred years</td>
</tr>
<tr>
<td>3</td>
<td>Likely</td>
<td>Once in ten years</td>
</tr>
<tr>
<td>4</td>
<td>Certain</td>
<td>Less than once a year</td>
</tr>
<tr>
<td>5</td>
<td>Imminent</td>
<td>More than once a year</td>
</tr>
</tbody>
</table>

Assessing Relative Level of Risk \(R = S \times L \)

<table>
<thead>
<tr>
<th>R</th>
<th>Assessment of Risk</th>
<th>Initial Priority for Action*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Low</td>
<td>4. Schedule for action after other risks</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>Medium</td>
<td>3. Further improvement required</td>
<td></td>
</tr>
<tr>
<td>5+</td>
<td>High</td>
<td>2. Immediate action required</td>
<td></td>
</tr>
<tr>
<td>10+</td>
<td>Totally unacceptable.</td>
<td>1. Shutdown unless additional controls instigated immediately</td>
<td></td>
</tr>
</tbody>
</table>

* Subject to Practicability Test
Application of the Practicability Test

Readers *should* note that the above system only provides a means of determining an initial, preliminary ranking of the *risks* to be controlled. It accounts for the likelihood of an incident occurring arising from the *hazard* occurring and the possible severity of that incident (that is, the consequence).

However, although any *risk* associated with the storage and handling of *dangerous goods* must be controlled, this requirement is qualified by practicability. This means that the other elements of “practicability” as defined in the national standard and further explained at CoP 5.1 *must* also be considered.

To determine a final ranking for the *risks* to be controlled, the feasibility of mitigating the *risk*, (that is, the availability and suitability of ways to do this) and the cost of mitigating the *risk* must be considered. It is conceivable that an *occupier* may identify a *risk* that needs to be controlled for which the likelihood and severity are relatively low but can be controlled easily and at low cost. In such circumstances, it may be *practicable* to control that *risk* before other *risks* that have a greater likelihood or severity.

Accuracy Limitations

Readers *should* note that the accuracy of the initial ranking of *risk* in the above system would be affected by the judgement made about the likelihood of an incident occurring and the severity of the *hazard*. For example, determining if an incident will occur once in a thousand years or once in ten years can be made by a qualified *risk* assessor using actuarial tables or by relying on some other, less scientific process. The assessment made about the likelihood will have a significant effect on the ranking of *risks* that are to be controlled.

Therefore, unless the assessment is done on a scientific basis, little reliance can be placed on the absolute level of *risk* determined in this way. However, provided the assumptions and assessments are carried out in a consistent manner for all *hazards* and the *risks* arising from them, it will usually provide a good indication of relative *risk* ranking.

The flow diagram overleaf provides a summary of the above system.
Flowchart of Risk Management System

1. **Identify the Hazard**

2. **Risk Assessment**
 - Quantify Severity of Outcome - S
 - Determine Likelihood of Incident - L
 - Assess Relative Level of Risk - \(R = S \times L \)

3. **Practicability Test**
 - Determine feasibility of mitigating risk
 - Estimate cost of mitigating risk
 - Determine final Risk Ranking for action

4. **Instigate Risk Control Measures**
APPENDIX 5 – CHECKLIST FOR IDENTIFYING HAZARDS ASSOCIATED WITH DANGEROUS GOODS AND COMBUSTIBLE LIQUIDS.

Dangerous goods and combustible liquids present a range of hazards that may increase the risk to life, health, property or the environment at premises where dangerous goods are stored and handled. These hazards are not necessarily limited to those identified by the Classification or subsidiary risks of the dangerous goods. Some properties that in isolation may not normally be regarded as hazardous may nonetheless increase the risk where dangerous goods are stored and handled and should therefore be regarded as hazards.

This checklist may assist in identifying many of the common hazards. However, while it identifies many of the properties of dangerous goods that may be hazards under some circumstances, there may be other properties that may present a hazard in the peculiar conditions that apply to the particular storage and handling activity. It is the responsibility of the occupier to rigorously investigate and identify all relevant hazards.

It is recommended that a separate checklist be prepared for each dangerous goods item or group of dangerous goods with similar properties.

Identification of the Dangerous Goods or Combustible Liquid

<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Subsidiary Risk(s)</th>
<th>UN Number</th>
<th>CAS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Formula</td>
<td>Ingredients</td>
<td>Proportion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On the following pages:
- identify which of the properties apply to the particular substance or article
- assign values as applicable
- determine the hazard implications
PROPERTIES WHICH MAY CONSTITUTE A HAZARD

A. Physical Properties

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Applies / Value</th>
<th>Hazard Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas dissolved under pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquefied gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryogenic liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscous liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid with solids in solution or suspension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finely divided solid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granular / flaked solid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caked or undivided solid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical state as stored / handled if different from above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solubility in water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiling point / range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting point / range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical conductivity / resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative density at 20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative density at 50 °C (or other relevant temperature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure as packed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapour pressure at 20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapour pressure at 50 °C (or other relevant temperature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH as stored and handled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH of 1% solution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. Flammability

<table>
<thead>
<tr>
<th>Property</th>
<th>Applies / Value</th>
<th>Hazard Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashpoint (closed cup)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flashpoint (open cup)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustains flame?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto ignition temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammability range</td>
<td>LEL %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UEL %</td>
<td></td>
</tr>
<tr>
<td>Evolves / produces hazardous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combustion products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosion potential</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Biological Hazards

<table>
<thead>
<tr>
<th>Property</th>
<th>Applies / Value</th>
<th>Hazard Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irritant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinogen (known / suspected)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitiser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologically active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Corrosivity

<table>
<thead>
<tr>
<th>Property</th>
<th>Applies / Value</th>
<th>Hazard Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other materials</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E. Reactivity

<table>
<thead>
<tr>
<th>Property</th>
<th>Applies / Value</th>
<th>Hazard Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>With air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With other materials (details)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self reactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decomposition conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous decomposition effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous decomposition products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymerisation potential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous polymerisation effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibitor required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlegmatiser required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanketing material required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self Accelerating Decomposition Temperature (S.A.D.T.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other special controls required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
F. Sensitivity

<table>
<thead>
<tr>
<th>Property</th>
<th>Applies / Value</th>
<th>Hazard Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>To shock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To radiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To moisture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To contamination with:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Property</th>
<th>Applies / Value</th>
<th>Hazard Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric pollutant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone depleter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odorous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual pollutant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine pollutant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground water pollutant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil pollutant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant half life information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special neutralising / absorbent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>material requirements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hazards associated with plant and equipment can be many and varied. Features that may be safe in one environment may be hazardous in another. It is important therefore to assess the hazards of the total installation, as well as the individual items.

Given the very broad range of plant and equipment that can be used in conjunction with the storage and handling of dangerous goods, this Appendix is not a definitive list of associated hazards. This can be redressed in a number of ways including:

1. Occupiers including in all supply contracts a requirement for the supplier to identify all known hazards associated with plant and equipment supplied;
2. Industry groups with similar types of installations preparing checklists for use by members;
3. Bodies such as Standards Australia preparing guidelines for use across industries.

In determining the hazards that may be associated with a plant and equipment, every part and function should be carefully considered:

(a) in isolation;
(b) as a whole; and
(c) in conjunction with any other installation which may lead to interaction.

A systematic method should be followed to ensure all hazards are identified. Tried and proven techniques such as “HAZOP” and “HAZAN” studies are useful tools for this purpose, when carried out by trained personnel.

For simpler systems, systematic application of the following worksheet may assist in identifying the different types of hazards. A separate sheet should be used for each feature or function of the item of plant or equipment.
<table>
<thead>
<tr>
<th>Type of Hazard</th>
<th>Individual Hazards of Feature or Function Identified</th>
<th>Additional Hazards in Conjunction with Other Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation and Structural Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Hazards (including static)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Hazard</td>
<td>Individual Hazards of Feature or Function Identified</td>
<td>Additional Hazards in Conjunction with Other Features</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fire Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Hazards</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. Unodorised Liquefied Petroleum Gas

Unodorised liquefied petroleum gas is particularly hazardous due to the absence of any discernible odour. Even a small undetected leak may result in the accumulation of an explosive atmosphere.

The following guidance should be considered in addition to specific guidance prepared by the providers of the gas.

- The storage and handling of unodorised liquefied petroleum gas should be kept to a minimum and restricted to those uses for which no less hazardous alternative is practicable, such as Aerosol propellant.
- The area where it is stored and handled should be well ventilated or in an open area or room designed for that purpose fitted with explosion ventilation; and
- Gas detection equipment should be installed where an explosive atmosphere may develop.

B. Potable Flammable Liquids

Alcoholic Beverages UN 3065 and Ethanol Solutions UN 1170 containing not more than 24 per cent ethanol by volume are not dangerous goods for the purposes of the national standard, based on Special Provision 144 of the ADG Code.

Alcoholic Beverages containing more than 24 % but not more than 70% ethanol by volume are assigned to Packing Group III by Special Provision 145, even though their flashpoints may be lower than 23 °C.

AS 1940 provides useful guidelines for the storage and handling of potable flammable liquids, in particular, the design of storage tanks, flanges, pipework and valves.

However, some parts of that standard may be unduly restrictive when considering the physical and chemical properties of potable liquids. Due to their miscibility with water, sufficient dilution with water will render the potable liquids effectively harmless. Therefore:

- for spillage control, dilution may be preferable to containment.; and
- an adequate sprinkler deluge system will provide effective fire protection.

In considering whether dilution is a safe option, environmental concerns need to be considered.

Particular attention should be given to the need for adequate and appropriate ventilation in any storage and handling area for potable liquids from the point of view of flammability and occupational exposures (such as to avoid intoxication).

C. Combustible Liquids

While the flammability hazards associated with combustible liquids are generally lower than for flammable liquids, their associated risks may not always be, due to:

- the reactivity of some combustible liquids with oxidizing agents, for example; brake fluid, which is commonly a combustible liquid, in contact with calcium hypochlorite (granular pool chlorine) will result in a fire; and ammonium nitrate mixed with dieseline forms a potentially explosive mixture;
- the total contribution of a combustible liquid to the fire load which is comparable to that of a flammable liquid; and
• the lower auto-ignition temperature of some combustible liquids, resulting in a fire on contact with a hot surface. For example, dieseline may have an auto-ignition temperature of the order of 250°C whereas that of petrol is usually of the order of 400°C.

D. Transit Storage

The term transit storage refers to short term storage at a location outside the normal storage area, where dangerous goods and/or combustible liquids are held while they are awaiting:

• loading for dispatch after their removal from storage areas;
• being placed in storage after receipt and unloading; or
• transfer within a premises for a specific purpose such as manufacturing.

Transit storage locations can present a particular hazard as they interface between transport and storage activities and they may contain goods with widely varying hazards. Storage in these locations is therefore subject to the full requirements of the national standard, except where they represent minor storage, where the guidelines of Appendix 1 should be followed.

The quantities of dangerous goods and combustible liquids in a transit storage location and the duration of that storage should be kept to a minimum commensurate with efficient operation.

The occupier needs to ensure that an incident occurring in a transit storage location is not likely to adversely affect the permanent storage or process areas or any other operations. Therefore, such locations should be provided with controls appropriate to the proposed type and quantity of goods, and the controls should be an adjunct to those in any associated warehousing, processing or transport areas.

E. Transport Storage Areas

The term ‘transport storage area’ may apply to a wide range of locations, including:

• locations inside a building at a transport depot where packages or intermediate bulk containers are held awaiting loading;
• external areas where loaded freight or tank containers are held awaiting further transport; or
• areas where loaded vehicles, including trailers and rail wagons are held in transit.

Except where principally intended for use with the particular dangerous goods traffic, the national standard would not normally apply to areas where loaded vehicles may be stopped during transit for such periods as may be necessary for the purposes of:

• loading or unloading;
• repairs to a broken down vehicle;
• exchange of crew, prime mover or railway locomotive;
• marshalling of, or delays to, trains awaiting track clearance; or
• necessary rest, refreshment or replenishment breaks.

The control measures recommended here are intended to be applied to transport storage areas when they are not of a semi-permanent nature. Where a transport storage area is regularly used for the temporary storage of the same type of dangerous goods or combustible liquids, the occupier should apply all of the requirements of the national standard that would apply to a permanent storage of those goods.

Transport storage areas present particular risks as they interface with transport activities and they may contain goods with widely varying hazards. However, due to the temporary nature
of these storages a risk assessment may show that where dangerous goods and/or combustible liquids are only held occasionally:

- some of the control measures that would apply to fixed storage may not be necessary; and
- in particular, a number of the storage and handling provisions contained in referenced documents in Appendix 3 may not be applicable.

Suggested Control Measures for Transport Storage Areas

The quantity of dangerous goods and/or combustible liquids in a transport storage area should be limited to that required for efficient operation. A quantity of 200 tonnes is considered to be an appropriate limit for most transport operations, however larger quantities may be acceptable in extensive premises such as a port area or rail yard.

The length of time that dangerous goods and/or combustible liquids will be held should be kept to a minimum, and in all cases must not exceed five consecutive working days. All dangerous goods must be packaged or contained, marked, stowed, secured, placarded, segregated and documented according to the ADG Code or other applicable modal transport code.

Incompatible dangerous goods must be kept apart to minimise adverse interaction. The minimum segregation and separation requirements that are applied in these areas should be those applicable to the particular transport mode in the ADG Code.

Transport storage areas for dangerous goods should be properly designated and clearly identified where practicable. However, this needs to be balanced by the need to keep incompatible goods separated. In a freight terminal where numbers of loaded freight containers are handled, it may be best to distribute the dangerous goods containers throughout the terminal to minimise spread of incidents between containers.

Ignition sources must be controlled in the vicinity of dangerous goods in transport storage areas.

Provision must be made for dealing with spills so that they can be localised, readily controlled and cleaned up.

Fire protection appropriate to the activity must be provided.

Where there is a short term need to use a previously non-designated area as a transport storage area for dangerous goods, a brief hazard identification and risk assessment should be carried out.
This Appendix is a sample worksheet, covering the suggested engineering controls for the principal design features of significant storage and handling installations such as a dangerous goods store, processing plant or factory where dangerous goods are used.

<table>
<thead>
<tr>
<th>Prepared by:</th>
<th>Approved by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature:</td>
<td>Signature:</td>
</tr>
<tr>
<td>Date:</td>
<td>Date:</td>
</tr>
</tbody>
</table>

Description and Location of Premises

Description of the Storage and Handling Installation
<table>
<thead>
<tr>
<th>DESIGN FEATURE</th>
<th>Considerations and Possible Sources</th>
<th>Discussion and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>The installation should be sufficiently separated from other facilities as to protect it and the danger goods from external hazards, and the other facilities from the danger goods.</td>
<td></td>
</tr>
</tbody>
</table>
| 1 Separation from boundaries | Appendix 3 documents assign widely varied distances, depending on Class, Packing Group and quantity of danger goods, and whether in closed or opened packages. Alternative solutions are to use: Districts from appropriate Class Standard, such as AS 1940 for Class 3
Districts from AS/NZS 3833 for mixed classes
Districts from other codes of practice; or
Other distances based on risk assessment. | |
| 2 Separation from protected works | AS 1940 assigns distances from 0 to 50 m for flammable and combustible liquids, depending on Class, Packing Group and Quantity. Others such as AS 3780 (Class 8) also vary with Packing Group and have different distances for closed and opened packages, for liquids and solids in bulk and for larger bulk storages, ranging from 3 to 15 m. AS/NZS 3833 has a different approach for goods with a flammability hazard than others. Alternatives: Districts from appropriate Class Standard
Districts from AS/NZS 3833 for mixed classes
Districts from other codes of practice; or
Other distances based on risk assessment. | |
<table>
<thead>
<tr>
<th>DESIGN FEATURE</th>
<th>Considerations and Possible Sources</th>
<th>Discussion and Action</th>
</tr>
</thead>
</table>
| Engineering Controls | **LOCATION**
3 **Separation from other dangerous goods storage**
Each of the *dangerous goods* Australian Standards specify minimum separation distances between *dangerous goods* storages. In some cases, the distances from protected works/places apply. These distances may be greater for storages on other premises. For most *dangerous goods* with a flammability hazard, these distances vary with quantity.
Distances given in the various Standards are designed to provide safety with most possible combinations of goods of the classes concerned. Because for example some *Class 8* react dangerously with some *Class 5.1*, distances given assume that all goods of these classes are incompatible, even though this can be demonstrated to be false with some combinations.
Therefore for many combinations lesser distances may be determined based on risk assessment than by following minimum separation distances determined from Appendix 3 documents. For this to be effective, however, the assessment must be based on the specific hazards of the actual dangerous goods being stored and handled (see Appendix 5), rather than on only *Class* hazards. | |
| | 4 **Separation from on-site facilities**
Some Codes and Standards permit lesser distances between dangerous goods storage and other facilities on the same premises than apply to similar facilities on other premises. Others require full *protected works* distances.
Given that the occupier will normally have control of the other on-site facilities and that emergency plans and procedures would be expected to include those facilities, a risk assessment may well determine that lesser distances are appropriate provided other controls are put in place. Alternatives approaches include:
♦ distances determined by risk assessment
♦ on-site facilities distances as determined from Appendix 1 documents
♦ protected works distances from Appendix 1 documents | |
<table>
<thead>
<tr>
<th>DESIGN FEATURE Engineering Controls</th>
<th>Considerations and Possible Sources</th>
<th>Discussion and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION 5 Separation from Ignition sources</td>
<td>For dangerous goods with a flammability hazard, distances determined from AS 2430 should be regarded as minimum. Because of the potential impact of fires involving dangerous goods, even those without a flammability hazard, as far as practicable, ignition sources should be kept away from all dangerous goods installations. Advice on safe ignition source distances is found in the individual Class Standards and in AS/NZS 3833</td>
<td></td>
</tr>
<tr>
<td>1 Separation from external hazards</td>
<td>Separation from external hazards needs to be determined on a case by case basis, depending on the nature of those hazards and the types of dangerous goods stored and handled. Consultation may need to take place with neighbours, utility providers, local government and the fire brigade.</td>
<td></td>
</tr>
<tr>
<td>2 Above flood levels</td>
<td>As most dangerous goods and combustible liquids are hazardous to the environment, areas where they are stored and handled should as far as practicable be above recorded flood levels. Where this is not practicable, the dangerous goods and combustible liquids should be in closed, impervious containers which are appropriately restrained Consultation with local government</td>
<td></td>
</tr>
<tr>
<td>DESIGN FEATURE</td>
<td>Considerations and Possible Sources</td>
<td>Discussion and Action</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>BUILDING CONSTRUCTION</td>
<td>1 Approvals</td>
<td>As with all building developments, buildings for storage and handling of dangerous goods must comply with the Building Code of Australia together with planning and local government requirements.</td>
</tr>
<tr>
<td></td>
<td>2 Suitable for purpose</td>
<td>Buildings for the storage and handling of dangerous goods should: ♦ be compatible with or protected from those goods ♦ as far as practicable be of non combustible construction ♦ be designed to contain and stop the spread of an incident ♦ if necessary, be designed with a frangible panel or roof to allow any internal explosion to dissipate with minimal impact on surrounding facilities ♦ provide suitable protection from adjoining and surrounding installations by means of appropriately fire rated screen walls and doors Very little guidance is provided in dangerous goods related Standards.</td>
</tr>
<tr>
<td>STORAGE SYSTEM CONSTRUCTION</td>
<td>Suitable for purpose</td>
<td>Construction of racking and shelving should be compatible with or protected from the dangerous goods. Racking and shelving should be located so as to provide ready access to all storage, both for normal operation and in emergencies. Very little guidance is provided in dangerous goods related Standards.</td>
</tr>
<tr>
<td>DESIGN FEATURE</td>
<td>Considerations and Possible Sources</td>
<td>Discussion and Action</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>SEPARATION OF INCOMPATIBLE GOODS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Screen Walls and Vapour Barriers</td>
<td>Separation distances between incompatible goods may be measured around screen wall and vapour barriers provided they will give equivalent protection to the required separation distance. For goods having a flammability hazard (Classes 2.1, 3, 4, 5, some 9 and combustible liquids), screen walls must have an appropriate fire resistance level (FRL). Useful guidelines on the use of screen walls is found in AS1940 and AS/NZS 3833</td>
<td></td>
</tr>
<tr>
<td>SPILLAGE CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Prevention</td>
<td>The most effective spillage control system is prevention. Careful design of structures and plant and selection of equipment coupled with sound operating procedures and training will minimise spillages. The design of the spillage control system can itself contribute to additional spills in package stores. High bund walls usually necessitate long or steep ramps causing load instability on materials handling equipment. Other methods of spill retention may be preferable in package stores and other work areas accessed by loaded forklifts. Spillage control should provide sufficient capacity to hold the largest foreseeable spill under any possible conditions. All dangerous goods Standards and Codes give guidelines on spill capacity calculation. For package stores, particularly those for small packages of PG II and III, risk assessment may show these recommendations to be excessive.</td>
<td></td>
</tr>
<tr>
<td>DESIGN FEATURE Engineering Controls</td>
<td>Considerations and Possible Sources</td>
<td>Discussion and Action</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| **SPILLAGE CONTROL**
 2 Bunding | Bunding is the most frequently specified system for containing dangerous goods spillages in storage and processing areas. It has the convenience of being able to be retrofitted to existing buildings and outdoor installations.
Bunding is the preferred method for above ground *bulk* storage installations.
Bund walls may be constructed from a variety of materials including:
♦ Concrete kerbing, preferably reinforced and integrally constructed with the flooring. If separate, it must be firmly anchored, adhered and sealed to withstand the inevitable traffic damage.
♦ Brick and concrete block walls are only acceptable where they are protected from damage by materials handling operations.
♦ Steel angles or other sections firmly anchored to the floor and sealed, usually with a silicone based sealant.
Temporary bund construction materials include:
♦ Raised earthen walls, preferably with an impervious membrane unless contingency plans are in place for the recovery or disposal of contaminated earth after a spill.
♦ Bags of sand or other compatible absorbent material.
For specially constructed bunded stores, the need for entry ramps may be avoided by gently sloping floors away from entries. However such slopes need to be minimised to avoid instability of materials handling equipment when placing loads in high rise racking.
External bunds should be provided with additional capacity to deal with rainwater and run off and with a secure system for the removal of that water. External bunds *should* therefore be subjected to the full *hazard* identification, *risk* assessment and control process. |
<table>
<thead>
<tr>
<th>DESIGN FEATURE</th>
<th>Considerations and Possible Sources</th>
<th>Discussion and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Controls</td>
<td>SPILLAGE CONTROL
3 Drains, Tanks, Sumps etc. Draining spilled material to an underground tank or sump or an external pit avoids the access problems associated with bunds. However the tank, pit or sump itself becomes a potential source of hazards, as does the network of drains. Generally each such containment system should be exclusively for the effluent from one store or work area unless all the dangerous goods and combustible liquids are compatible and effective provision is made to prevent flashback. Such containment systems should, if at all possible, be prevented from collecting rainwater. These systems are frequently out of sight so controls need to be in place to ensure they are fully available for use when required. They should therefore be subjected to the full hazard identification, risk assessment and control process.</td>
<td></td>
</tr>
<tr>
<td>SAFE ATMOSPHERE</td>
<td>1 Natural Ventilation Most dangerous goods Standards and Codes provide some guidelines on the design of natural ventilation systems. Many dangerous goods vapours are heavier than air, so to prevent build up of hazardous concentrations, vents should normally be provided at a level immediately above any spill containment, on opposite sided of room or space to provide for air flow. High level ventilation may also be necessary for temperature control. Vents should be located away from any external potential ignition sources. Vents in screen wall negate any fire protection or vapour barrier effects. Refer to the relevant Standards and Codes for guidance.</td>
<td></td>
</tr>
<tr>
<td>DESIGN FEATURE</td>
<td>Engineering Controls</td>
<td>Considerations and Possible Sources</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>SAFE ATMOSPHERE</td>
<td>2 Mechanical Ventilation</td>
<td>Inlet and outlet vents should normally be located on opposite sides of the store at low levels to as far as practicable provide a laminar airflow across the floor. Where both inlet and exhaust are mechanically assisted, capacities and rates should be adjusted to ensure that the pressure inside the store never exceeds that outside, and especially in any adjoining offices or other work areas to prevent air flow from the store. Refer to the relevant Standards and Codes for guidance.</td>
</tr>
<tr>
<td>3 Local Exhaust Ventilation</td>
<td>Mechanical extraction of atmospheric contaminants at the source is usually more effective in providing a safe working atmosphere than is general ventilation. Extraction vents should be placed and have sufficient capacity under all atmospheric conditions so as to prevent the escape of contaminants into the work area. Discharge points should be located so as to prevent further contamination of this or any other work area. Extraction ducting should not be linked to multiple items of plant if fire could spread through the ducting. Provision against flash back may be required. The exhaust system should be resistant to attack by the vapours, mists and dusts being exhausted. Very little guidance is provided in dangerous goods related Standards.</td>
<td></td>
</tr>
<tr>
<td>4. Exhaust Cleaning</td>
<td>Where any exhaust ventilation may carry atmospheric contamination which may cause environmental pollution or nuisance, it may be necessary to fit some mechanism to clean the exhaust prior to discharge to atmosphere. Suitable mechanisms may include various types of filtration for particulates, or absorbents, catalysts, scrubbers or burners for other contaminants. Little guidance is provided in the Standards</td>
<td></td>
</tr>
</tbody>
</table>
This Appendix provides guidance for industrial trucks operating in hazardous areas.

Industrial trucks used in hazardous areas present a fire hazard in dangerous goods storage and handling areas where flammable or explosive atmospheres may be present. The following guidance addresses a number of specific design and construction issues to assist in reducing the risk.

In determining whether all or any of the following guidance material is utilised, the occupier should undertake the normal hazard identification, risk assessment and control process. As a general rule, these guidelines should be regarded as the minimum standard to apply unless the particular risk assessment shows this to be unnecessary.

ZONE 1 HAZARDOUS AREAS AS DEFINED IN AS 2430

If an industrial truck is used in a Zone 1 hazardous area as defined in AS 2430, the occupier should ensure that the industrial truck complies with the following:

(a) the requirements of AS 1915, if the industrial truck is battery operated;
(b) the requirements of Section 13 of AS 2359.1, if the industrial truck is powered other than by a battery; or
(c) the recommended provisions shown below, if the industrial truck is used in a Zone 1 hazardous area and is powered by a compression ignition internal combustion engine:
 (i) all electrical equipment is removed from the truck or is protected by approved flame-proofing, pressurising or purging, or a combination of any or all of these methods, or by other approved means;
 (ii) adequate flame paths are provided on all inlet and exhaust connections;
 (iii) all joints in the inlet and exhaust lines, including the attachments of the inlet and exhaust manifold to the engine block, have at least 12 mm sealing paths. Gaskets, if used, should be of copper 1.5 mm in thickness or of other suitable material;
 (iv) a flame trap is fitted in the air inlet line to the engine;
 (v) a strangler is fitted in the air inlet line to the engine with controls that are within easy reach of the operator of the truck when the operator is at the operating positions;
 (vi) a water wash box or other effective flame trap is provided for quenching exhaust gases;
 (vii) if a water wash box is provided, it contains sufficient water to allow 8 hours’ operation without refilling. It should have a low-level cut-off switch such that if the water level in the box drops to a level which renders the water wash inoperative, the motor will automatically stop and cannot be restarted until the water is replenished;
 (viii) precautions are taken to ensure that the maximum temperature reached by any part of the truck which may come into contact with the atmosphere outside the truck does not at any time exceed 200 degrees Celsius when the truck is in operation;
 (ix) all components of the truck are of sufficient strength to withstand an internal explosion of a mixture of propane and air giving the highest explosion pressure possible for such a mixture; and
(x) precautions are taken to ensure that mechanical sparks cannot be produced in the engine compartment of the truck during normal operations.

ZONE 2 HAZARDOUS AREA AS DEFINED IN AS 2430

If an industrial truck is in use in a Zone 2 hazardous area, the occupier should ensure that either the truck complies with the above requirements for a Zone 1 hazardous area as described above, or:

(a) if powered by an electric motor:
 (i) the truck is not equipped with a motor or any other electrical equipment capable of arcing or sparking; or
 (ii) if equipped with arcing and sparking equipment, it is protected in an approved manner to eliminate the likelihood of it causing any ignition; or

(c) if powered by a compression ignition internal combustion engine, the truck:
 (i) complies with the requirements for a Zone 1 hazardous area, parts (c) (v), (vi), (vii) and (x) above; and
 (ii) is fitted with a switch to isolate all electrical equipment that may arc or spark, and that switch is kept open at all times when the truck is in use.
The following table is a summary of minimum sizes of packagings for which dangerous goods package marking is required by the ADG Code Edition 6. It summarises the series of flowcharts in Chapter 7 of that Code.

Inner packagings require “Inner Package Marking”; outer or sole packagings require “Standard Package Marking”. Details of these requirements may be found at CoP 34.1.

<table>
<thead>
<tr>
<th>Class</th>
<th>PG</th>
<th>Exemption Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>-</td>
<td>< 30 mL capacity</td>
</tr>
<tr>
<td>2.2</td>
<td>-</td>
<td><100 mL capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Except for Aerosol inner packagings</td>
</tr>
<tr>
<td>2.3</td>
<td>-</td>
<td>< 30 mL capacity</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>~No exemption other than inner packagings of < 20 mL</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td><150 mL</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td><300 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Except for ‘Manufactured Product’ < 2 L</td>
</tr>
<tr>
<td>4.1</td>
<td>I</td>
<td>~No exemption other than inner packagings of < 20 g</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>< 2 kg</td>
</tr>
<tr>
<td>4.2</td>
<td>I</td>
<td>~No exemption other than inner packagings of < 20 g</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td><500 g</td>
</tr>
<tr>
<td>4.3</td>
<td>I</td>
<td>~No exemption other than inner packagings of < 20 g</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td><150 g</td>
</tr>
<tr>
<td>5.1</td>
<td>I</td>
<td>~No exemption other than inner packagings of < 20 mL (liquid) or < 20 g (solid)</td>
</tr>
<tr>
<td></td>
<td>II & III</td>
<td>< 1 L (liquid) or < 1 kg (solid)</td>
</tr>
<tr>
<td>5.2</td>
<td>Type B</td>
<td><150 mL (liquid) or <150 g (solid)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Above 150 mL/g, a Sub-risk 1 (Explosive) label is required in addition to standard marking)</td>
</tr>
<tr>
<td>Types C–F</td>
<td></td>
<td>< 150 mL (liquid) or < 150 g (solid)</td>
</tr>
<tr>
<td>6.1</td>
<td>I</td>
<td>~No exemption other than inner packagings of < 20 mL (liquid) or < 20 g (solid)</td>
</tr>
<tr>
<td></td>
<td>II & III</td>
<td><500 mL (liquid) or <500 g (solid)</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>~No exemption other than inner packagings of < 20 mL (liquid) or < 20 g (solid)</td>
</tr>
<tr>
<td></td>
<td>II & III</td>
<td><500 mL (liquid) or <500 g (solid)</td>
</tr>
<tr>
<td>9</td>
<td>II & III</td>
<td>< 2 L (liquid) or < 2 kg (solid)</td>
</tr>
</tbody>
</table>
A. Requirement for Outer Placarding

Start here

In this Diagram:

D/G means

Dangerous Goods
–not including
Combustible Liquids

>5 kg/L Goods Too Dangerous to be Transported?

No

>5,000 kg/L total
Class 2.2 + 9 + Aerosols?

No

Any other D/G, C1 or C2?

Yes

>2,000 kg/L total D/G?

No

>1,000 kg/L individually of Class 3, 4.1, 4.2, 4.3, 5.1, 5.2, 6.1 or 8?

No

>250 kg/L PG II of Class 3, 4.1, 4.2, 4.3, 5.1, 5.2, 6.1 or 8?

No

>50 kg/L PG I of Class 3, 4.1, 4.2, 4.3, 5.1, 5.2, 6.1 or 8?

No

>500 L Class 2.1?

Yes

>50 L Class 2.3?

Yes

>1,000 kg/L Class 9, PG II?

No

>1,000 L cryogenic fluids?

Yes

>1,000 kg/L C1 + C2 + total of Class & Sub-Risk 2.1, 3, 4 & 5?

No

>50,000 L C1?

Yes

>10,000 L C1 in bulk?

Yes

No Outer Warning Placard Required

HAZCHEM Outer Warning Placard Required
B. Requirement for Placarding Dangerous Goods and/or Combustible Liquids in Bulk

Dangerous goods and/or combustible liquids in bulk (other than IBCs)?

Are dangerous goods or combustible liquids:
- Class 2.1 or 3 in underground tanks at a service station?
- in portable bulk containers intended for transport?

Placard for dangerous goods in bulk is required, as per Schedule 3 of the national standard

Bulk placarding not required
APPENDIX 12 – SAMPLE MANIFEST FORM

DANGEROUS GOODS AND COMBUSTIBLE LIQUIDS MANIFEST

Occupier: ..

Address of premises: ..

..

Date of preparation: ..

Site Plan Number: ...

Emergency contacts

<table>
<thead>
<tr>
<th>NAME</th>
<th>POSITION</th>
<th>TELEPHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B/H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B/H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B/H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/H</td>
<td></td>
</tr>
</tbody>
</table>

1. BULK STORAGE

<table>
<thead>
<tr>
<th>Tank Id No.</th>
<th>Dangerous goods</th>
<th>Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
<td>Class</td>
</tr>
<tr>
<td>DG T1</td>
<td>Petrol</td>
<td>3</td>
</tr>
<tr>
<td>DG T2</td>
<td>Combustible liquid</td>
<td>C2</td>
</tr>
<tr>
<td>DG T3</td>
<td>LPGas</td>
<td>2.1</td>
</tr>
<tr>
<td>DG T4</td>
<td>Hydrogen Peroxide</td>
<td>5.1</td>
</tr>
</tbody>
</table>

u/g — underground
a/g — aboveground
n/a — not applicable
2. PACKAGE STORAGE AREAS

2.1 Packaged dangerous goods of Packing Group I or Class 2.3

<table>
<thead>
<tr>
<th>Storage area</th>
<th>Name</th>
<th>Class</th>
<th>Sub Risk</th>
<th>UN No.</th>
<th>PG</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1</td>
<td>Sodium Picramate</td>
<td>4.1</td>
<td></td>
<td>1349</td>
<td>I</td>
<td>20 kg</td>
<td>50 kg</td>
</tr>
</tbody>
</table>

2.2 Other packaged dangerous goods

<table>
<thead>
<tr>
<th>Storage Area</th>
<th>Class</th>
<th>Sub Risk(s)</th>
<th>Packing Group</th>
<th>Average Quantity</th>
<th>Maximum Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2</td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>10,000 kg/L</td>
<td>15,000 kg/L</td>
</tr>
<tr>
<td>PS3</td>
<td>3</td>
<td>II</td>
<td></td>
<td>15,000 L</td>
<td>20,000 L</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>III</td>
<td></td>
<td>15,000 L</td>
<td>25,000 L</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>600 L</td>
<td>1,000 L</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td>15,000 L</td>
<td>20,000 L</td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td>4,000 L</td>
<td>8,000 L</td>
</tr>
<tr>
<td>PS4</td>
<td>8</td>
<td>II</td>
<td></td>
<td>8,000 kg/L</td>
<td>12,000 kg/L</td>
</tr>
</tbody>
</table>

3. MANUFACTURING AREAS

<table>
<thead>
<tr>
<th>Area</th>
<th>Class</th>
<th>Sub Risk(s)</th>
<th>Packing Group</th>
<th>Max. Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1</td>
<td>3</td>
<td>II</td>
<td></td>
<td>2,000 L</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>III</td>
<td></td>
<td>10,050 L</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td></td>
<td></td>
<td>2,000 L</td>
</tr>
<tr>
<td>MA2</td>
<td>5.1</td>
<td>8</td>
<td>II</td>
<td>1,500 L</td>
</tr>
<tr>
<td>MA3</td>
<td>3</td>
<td>II</td>
<td></td>
<td>200 L</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>III</td>
<td></td>
<td>25 L</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>II</td>
<td></td>
<td>100 L</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>III</td>
<td></td>
<td>2,000 L</td>
</tr>
</tbody>
</table>
APPENDIX 14 – SAMPLE EMERGENCY PROCEDURES POCKET CARD

For a Transport Depot where dangerous goods are handled - could readily be adapted for other premises

FIRE PROCEDURES

On hearing Alarm:
- Make safe whatever you are doing
- Ensure all roadways and emergency accesses in your area are clear
- Move as quickly as possible to your designated assembly area
- Have your name checked off immediately on arrival
- Watch out for emergency vehicles
- Avoid moving through smoke and any signs of emergency activity
- Follow instructions from Area Wardens
- Take contractors and visitors with you

If you discover a fire:
1. Make sure alarm is raised
2. If possible, move materials in danger away from the fire to stop it spreading
3. Avoid breathing smoke or fumes
4. Fight the fire using extinguisher or hose reel if trained to do so
5. If not involved in fire fighting, keep away and go to assembly area

NO HEROICS!

[Company Details]

SITE EMERGENCY PROCEDURES

Emergencies include:
- FIRE
- COLLISION
- Any INJURY to persons
- CHEMICAL SPILL or LEAK
- Any other incident threatening life, health, property or the environment

In any Emergency:
1. Raise the alarm
2. Notify your Supervisor
3. Warn anyone in danger
4. Then give whatever assistance it is safe for you to give
5. If not involved with the Emergency, keep away from the scene.

NEVER PUT YOURSELF AT RISK
CHEMICAL EMERGENCY

If you discover a DANGEROUS GOODS or Chemical Spill or Leak:

- Keep away until positively identified
- Keep upwind
- Avoid all contact with material
- Avoid breathing gas, fumes, mist or dust
- Immediately notify Supervisor
- Warn nearby persons
- Keep all ignitions sources away

Assess if it is a Dangerous Occurrence, based on type and quantity of leaking substance

Raise alarm if Dangerous Occurrence

Obtain information from:

- Manifest
- Shipping Documentation
- Labels and Placards
- EPG or HB76
- MSDS

Observe HAZCHEM precautions

Stop leakage if safe to do so

Prevent spillage from entering drains

HAZCHEM INTERPRETATION

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water Jets</td>
</tr>
<tr>
<td>2</td>
<td>Water Fog</td>
</tr>
<tr>
<td>3</td>
<td>Foam</td>
</tr>
<tr>
<td>4</td>
<td>Dry Agent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIRST LETTER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>V: Full Protective Clothing*</td>
</tr>
<tr>
<td>R</td>
<td>V: Full Protective Clothing*</td>
</tr>
<tr>
<td>S</td>
<td>V: Breathing Apparatus</td>
</tr>
<tr>
<td>S</td>
<td>V: Breathing Apparatus for Fire Only</td>
</tr>
<tr>
<td>T</td>
<td>Breathing Apparatus</td>
</tr>
<tr>
<td>T</td>
<td>Breathing Apparatus for Fire Only</td>
</tr>
<tr>
<td>W</td>
<td>V: Full Protective Clothing*</td>
</tr>
<tr>
<td>X</td>
<td>V: Full Protective Clothing*</td>
</tr>
<tr>
<td>Y</td>
<td>V: Breathing Apparatus</td>
</tr>
<tr>
<td>Y</td>
<td>V: Breathing Apparatus for Fire Only</td>
</tr>
<tr>
<td>Z</td>
<td>Breathing Apparatus</td>
</tr>
<tr>
<td>Z</td>
<td>Breathing Apparatus for Fire Only</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND LETTER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Consider Evacuation</td>
</tr>
</tbody>
</table>

Note: V: Danger of violent reaction or explosion
* Full Protective Clothing includes Breathing Apparatus
APPENDIX 15 – DANGEROUS GOODS COMPATIBILITY CHART

1. UNDER CONSTRUCTION